Release of neurotransmitter from synaptic vesicles requires the Ca2+/phospholipid-binding protein synaptotagmin 1. There is considerable evidence that cooperation between the tandem C2 domains of synaptotagmin is a requirement of regulated exocytosis; however, high-resolution structural evidence for this interaction has been lacking. The 2.7 A crystal structure of the cytosolic domains of human synaptotagmin 1 in the absence of Ca2+ reveals a novel closed conformation of the protein. The shared interface between C2A and C2B is stabilized by a network of interactions between residues on the C-terminal alpha-helix of the C2B domain and residues on loops 1-3 of the Ca2+-binding region of C2A. These interactions alter the overall shape of the Ca2+-binding pocket of C2A, but not that of C2B. Thus, synaptotagmin 1 C2A-C2B may utilize a novel regulatory mechanism whereby one C2 domain could regulate the other until an appropriate triggering event decouples them.
Synaptotagmin acts as the Ca 2+ sensor for neuronal exocytosis. The cytosolic domain of human synaptotagmin 1 is composed of tandem C2 domains: C2A and C2B. These C2 domains modulate the interaction of synaptotagmin with the phospholipid bilayer of the presynaptic terminus and effector proteins such as the SNARE complex. Human synaptotagmin C2A-C2B has been expressed as a glutathione-S-transferase fusion protein in Escherichia coli. The purification, crystallization and preliminary X-ray analysis of this protein are reported here. The crystals diffract to 2.7 Å and belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 82.37, b = 86.31, c = 140.2 Å . From selfrotation function analysis, there are two molecules in the asymmetric unit. The structure determination of the protein using this data is ongoing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.