Mxi1 belongs to the Myc/Max/Mad network of proteins that have been implicated in the control of multiple aspects of cellular behavior. Previously, we had reported that the mouse mxi1 gene gives rise to two distinct transcript forms that can encode proteins with dramatically different functional abilities. The Mxi1-SR protein (here termed Mxi1-SRb) can interact with Sin3/histone deacetylase and function as a potent transcriptional repressor and growth suppressor, while the Mxi1-WR protein lacks these activities. Here, we describe a new mxi1-derived transcript form (termed mxi1-SRa) whose expression is governed by its own promoter, resulting in a spatiotemporally distinct expression profile from that of the highly related mxi1-SRb form. Moreover, the Mxi1-SRa protein product, with its unique Sin3 interacting domain, has a greater affinity than its Mxi1-SRb counterpart for the Sin3 adapter proteins as well as an enhanced potential for transcriptional repression in transient reporter assays. Our identification of this novel Mxi1 isoform that results from alternative 5 0 exon usage adds an additional layer of complexity to the Mad/Mxi1 family. In addition, our findings warrant re-evaluation of mxi1 expression patterns on the cellular level and its status in human cancer samples, with a renewed focus on the distinct isoforms.
Rybp (DEDAF) has been shown to interact with DED-containing proteins and to encode pro-apoptotic functions. Here we characterize a novel interaction between Rybp and Hippi, a protein implicated in neuronal apoptosis as well as in the pathogenesis of Huntington's disease. Rybp can synergize with Hippi to enhance Caspase 8-mediated apoptosis and also appears to be essential for Hippi-mediated apoptosis. Moreover, Rybp may mediate or regulate the interaction between Hippi and Caspase 8. Finally, Rybp and Hippi co-localize in a subset of neurons in the developing mouse brain. Together, these findings suggest that Rybp and Hippi may functionally interact in the apoptotic processes that accompany normal murine neural development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.