The NP-PFC procedure more rapidly induced preferential brain cooling as compared to WBC without adverse effects.
Enhanced local control of disease in lung cancer has been shown to improve survival, and controlled clinical trials of hyperthermia adjunctive to radiotherapy in other cancers have shown improved disease control and survival over radiotherapy alone. The challenge of lung hyperthermia, however, persists. This investigation sought to demonstrate the feasibility of localized lung hyperthermia at depth via therapeutic ultrasound. The method is based on using breathable perfluorochemical liquids as acoustic coupling media in the lung, liquids that have also been shown to enable controlled liquid-filled lung convective hyperthermia (LCHT). The ability to use both lung convective hyperthermia and liquid-filled lung ultrasound hyperthermia (LUHT) provides potential flexibility in heating patterns for the hyperthermic treatment of lung cancer with concurrent radiotherapy and/or chemotherapy. Using custom ultrasound transducers designed and built for these studies, the acoustic properties of three candidate perfluorochemicals were characterized over a range of temperatures, gas contents and ultrasound frequencies and acoustic intensities. Both sound speed and attenuation were measured in the neat liquids and in isolated lungs filled with the perfluorochemicals. Successful ultrasound hyperthermia at depth was demonstrated in vivo in sheep lung lobes in intraoperative conditions. In addition, the use of ultrasound diagnostic imaging was explored as a tool for use in conjunction with lung ultrasound hyperthermia.
Clinical studies have shown that hyperthermia in combination with radiotherapy and/or chemotherapy may be effective in the treatment of advanced cancer. No method of lung hyperthermia, however, has been accepted as standard or superior. This investigation sought to demonstrate in animals the thermal and physiologic feasibility of lung hyperthermia induced using heated breathable perfluorochemical (PFC) liquids, a method termed liquid-filled lung convective hyperthermia (LCHT). The ability to use LCHT is rooted in the development of both PFC liquid ventilation, now in clinical development with the PFC perflubron (LiquiVent), and a PFC blood substitute also in late Phase III trials (Oxygent). As LCHT background, the PFC technologies and biology are first reviewed. The physical properties of a variety of PFCs were evaluated for LCHT and it was concluded that more than one liquid is suitable based on such properties. Using total liquid ventilation type devices, LCHT was shown to deliver successfully localized (lobar) lung heating in sheep, and bilateral whole lung heating and whole-body hyperthermia in rabbits, cats and lambs. During LCHT, lung parenchymal temperatures were uniform (<1 degree C) across heated regions. In addition, based on patterns relating lung tissue temperatures to inspiratory and expiratory PFC liquid temperatures in the endotracheal tube, LCHT may minimize invasive thermometry requirements in the lung. Based on acute experiments, it was concluded that LCHT appears feasible and may simplify lung hyperthermia. It was recommended that potentially synergistic combinations of LCHT with other whole-body hyperthermia or local heating modalities, and with chemotherapeutic lung drug delivery, also be explored in the future.
A technique for experimental determination of regional myocardial blood flow and heat generation has been developed, based on a heat-clearance method. This method allows repetitive and frequent measurements of regional blood flow without necessity for biopsy or microspheres. Testing was performed on a pedicle preparation, an intact segment of left ventricular myocardium dependent on a single diagonal coronary artery and situated in situ in the left ventricular free wall. Total blood flow to the pedicle was measured by an electromagnetic flow probe. A specially designed 3-thermistor microprobe was positioned in the pedicle to continuously sense temperature changes in the subepicardium, midmyocardium, and subendocardium. The theory underlying this method is based on a heat balance that includes local myocardial heating, conduction, and convection. Comparison of the predicted time- and position-dependent temperature with that measured experimentally allows extraction of the local myocardial blood flow and heating rates. This method allows resolution of differential flows in subendocardial, midmyocardial, and subepicardial myocardium and provides quantification of dynamic flow changes in each layer in response to various stimuli such as ischemia or pressor agents, without in itself causing damage to the myocardial microvasculature. Our data show total flow, based on summation of thermally calculated regional flows, to have correlation coefficients of 0.88 with both the flowmeter and microsphere results. Resting flow values for Nembutal-anaesthetized, open-chest dogs of 0.66 ml/(g . min) compare favorably with values obtained by microsphere studies. Infusion of norepinephrine increased total flow and all layer flows, but the increase in subendocardial flow with norepinephrine was less than the increase of the other layers, perhaps accounting for the vulnerability of this region during catecholamine stress. Local myocardial heating rates in subepicardial, midendocardial, and subendocardial layers are shown to follow the same dependence on local myocardial blood flow in response to anoxic stress or norepinephrine-induced vasodilation. Specifically, local heating rate increases to a factor of 10 at flow below resting level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.