Four key cellular metabolic fluorophores--tryptophan, pyridoxine, NAD(P)H, and riboflavin--were monitored on-line by a multiple excitation fluorometric system (MEFS) and a modified SLM 8000C scanning spectrofluorometer in three model yeast fermentation systems--bakers' yeast growing on glucose, Candida utilis growing on ethanol, and Saccharomyces cerevisiae RTY110/pRB58 growing on glucose. The measured fluorescence signals were compared with cell concentration, protein concentration, and cellular activity. The results indicate that the behavior and fluorescence intensity of various fluorophores differ in the various fermentation systems. Tryptophan fluorescence is the best signal for the monitoring of cell concentration in bakers' yeast and C. utilis fermentations. Pyridoxine fluoresce is the best signal for the monitoring of cell concentration in the S. cerevisiae RTY110/pRB58 fermentation. In bakers' yeast fermentations the pyridoxine fluorescence signal can be used to monitor cellular activity. The NAD(P)H fluorescence signal is a good indicator of cellular activity in the C. utilis fermentation. For this fermentation NAD(P)H fluorescence can be used to control ethanol feeding in a fed-batch process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.