Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.
Some of the most striking and extreme consequences of rapid, long-distance aerial dispersal involve pathogens of crop plants. Long-distance dispersal of fungal spores by the wind can spread plant diseases across and even between continents and reestablish diseases in areas where host plants are seasonally absent. For such epidemics to occur, hosts that are susceptible to the same pathogen genotypes must be grown over wide areas, as is the case with many modern crops. The strongly stochastic nature of long-distance dispersal causes founder effects in pathogen populations, such that the genotypes that cause epidemics in new territories or on cultivars with previously effective resistance genes may be atypical. Similar but less extreme population dynamics may arise from long-distance aerial dispersal of other organisms, including plants, viruses, and fungal pathogens of humans.
Genome size varies greatly across angiosperms. It is well documented that, in addition to polyploidization, retrotransposon amplification has been a major cause of genome expansion. The lack of evidence for counterbalancing mechanisms that curtail unlimited genome growth has made many of us wonder whether angiosperms have a "one-way ticket to genomic obesity." We have therefore investigated an angiosperm with a well-characterized and notably small genome, Arabidopsis thaliana, for evidence of genomic DNA loss. Our results indicate that illegitimate recombination is the driving force behind genome size decrease in Arabidopsis, removing at least fivefold more DNA than unequal homologous recombination. The presence of highly degraded retroelements also suggests that retrotransposon amplification has not been confined to the last 4 million years, as is indicated by the dating of intact retroelements.
HighlightsWe review the genetics of wheat resistance to Septoria tritici blotch, with a map of known genes.Qualitative resistance is usually monogenic, genotype-specific and non-durable.Quantitative resistance is generally polygenic with low specificity and greater durability.Major requirements for resistance breeding are diverse germplasm and field sites with severe Septoria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.