Aflatoxin is considered a “hidden poison” due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer’s fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern “omics” approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.
Post-harvest losses caused by the larger grain borer (LGB, Prostephanus truncatus) aggravate food insecurity among small-scale farmers. Host plant resistance is a method of LGB control which should be prioritized in order to reduce these losses. The objective of this study was to assess maize resistance to the larger grain borer and recognize some potential causes of resistance. One hundred and sixty-three (163) genotypes were tested; these included 85 hybrids, 2 checks, 6 open pollinate varieties, and 70 landraces, among them gene bank accessions. Grain biochemical content, (protein, oil and starch) and insect resistance parameters, (percentage grain damage, weight loss, flour weight, and number of emerged insects) were measured. There were significant differences (P \ 0.001) among the genotypes for all the traits measured except number of insects. The most resistant hybrids were CKPH08024, CKPH08009, CKPH08012, CKPH08014, CKP08033, CKPH08026, CKPH08014, and CKPH08003. The most resistant landrace accessions were BRAZ 2451, GUAT 1162, BRAZ 2100, and GUAN 36. The percentage weight loss was found to be the most important resistance trait for discriminating among genotypes for it had the largest canonical coefficient. Protein content had higher contribution to variation in resistance to the larger grain borer and this probably contributed to the grain hardness which is a putative trait of resistance to storage pests. The LGB-resistant germplasm could be used for the development of an integrated pest-management program against the LGB.
has shown potential for achieving >75% oleic acid as demonstrated among introgression lines. Significant advances have been made in seed systems research to bridge the gap between trait discovery, deployment, and delivery through innovative partnerships and action learning.
Developing maize with durable resistance to maize stem borers could be enhanced by identifying genotypes with different mechanisms of resistance and pyramiding the resistances into high yielding genotypes. This study was carried out on 120 CIMMYT tropical maize inbred lines to identify the most important mechanisms of resistance that could be used to discriminate the germplasm into resistant or susceptible categories. The experiment was laid in an α-lattice design, and replicated three times during the 2011/12 seasons. Traits measured were leaf toughness, stem penetrometer resistance, trichome density, stem sugar content, leaf damage, number of stem exit holes and stem cumulative tunnel length. A selection index was computed and categorized the 120 inbred lines into 33 resistant, 29 moderately resistant, 31 moderately susceptible and 27 susceptible. The most resistant lines were those derived from the CIMMYT multiple borer-resistant populations with CKSBL10039 being most resistant and CML395 most susceptible with indices of 0.49 and 1.84, respectively. Trichome density, leaf toughness and stem sugar content in that order were the most important traits in discriminating the lines into resistance and susceptible categories. More research is needed to classify the specific types of trichomes and sugars present in both resistant and susceptible inbred lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.