We consider several non-local models for traffic flow, including both microscopic ODE models and macroscopic PDE models. The ODE models describe the movement of individual cars, where each driver adjusts the speed according to the road condition over an interval in the front of the car. These models are known as the FtLs (Follow-the-Leaders) models. The corresponding PDE models, describing the evolution for the density of cars, are conservation laws with non-local flux functions. For both types of models, we study stationary traveling wave profiles and stationary discrete traveling wave profiles. (See definitions 1.1 and 1.2, respectively.) We derive delay differential equations satisfied by the profiles for the FtLs models, and delay integro-differential equations for the traveling waves of the nonlocal PDE models. The existence and uniqueness (up to horizontal shifts) of the stationary traveling wave profiles are established. Furthermore, we show that the traveling wave profiles are time asymptotic limits for the corresponding Cauchy problems, under mild assumptions on the smooth initial condition. w(y − z i (t)) dy, k ≥ 0, 1, 2, · · · .(1.8)Notice that the summation in (1.7) actually contains only finitely many non-zero terms. Indeed, if (m + 1) ≥ h, then for every k > m one hasHence, by (1.3), w i,k = 0. With the above definition, from (1.3) it also follows m k=0 w i,k (t) = 1, w i,k (t) ≥ 0 ∀t ≥ 0.(1.9)
We prove convergence of a finite difference scheme to the unique entropy solution of a general form of the Ostrovsky-Hunter equation on a bounded domain with non-homogeneous Dirichlet boundary conditions. Our scheme is an extension of monotone schemes for conservation laws to the equation at hand. The convergence result at the center of this article also proves existence of entropy solutions for the initial-boundary value problem for the general Ostrovsky-Hunter equation. Additionally, we show uniqueness using Kružkov's doubling of variables technique. We also include numerical examples to confirm the convergence results and determine rates of convergence experimentally.
We propose an implicit finite-difference method to study the time evolution of the director field of a nematic liquid crystal under the influence of an electric field with weak anchoring at the boundary. The scheme allows us to study the dynamics of transitions between different director equilibrium states under varying electric field and anchoring strength. In particular, we are able to simulate the transition to excited states of odd parity, which have previously been observed in experiments, but so far only analyzed in the static case.
We consider the dynamics of the director in a nematic liquid crystal when under the influence of an applied electric field. Using an energy variational approach we derive a dynamic model for the director including both dissipative and inertial forces.A numerical scheme for the model is proposed by extending a scheme for a related variational wave equation. Numerical experiments are performed studying the realignment of the director field when applying a voltage difference over the liquid crystal cell. In particular, we study how the relative strength of dissipative versus inertial forces influence the time scales of the transition between the initial configuration and the electrostatic equilibrium state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.