A major factor determining the explosivity of silicic eruptions is the removal of volatiles from magma through permeability‐controlled outgassing. We studied the microstructural development of permeability during deformation of highly viscous magma by performing simple shear experiments on bubble (0.12–0.36 volume fraction) and crystal‐bearing (0–0.42 volume fraction) silicate melts. Experiments were performed under torsion, at high temperature and pressure (723–873 K and 150–200 MPa) in a Paterson deformation apparatus at bulk shear strains between 0 and 10. The experimental setup allows for gas escape if bubble connectivity is reached on the sample periphery. Three‐dimensional imaging and analysis of deformed bubbles was performed using X‐ray tomography. The development of localized deformation in all samples, enhanced by crystal content, leads to brittle fracture at bulk strains > 2 and sample‐wide fracturing in samples deformed to strains >5. A decrease in both bubble fraction and dissolved volatile content with increasing strain, along with strain‐hardening rheological behavior, suggests significant shear‐induced outgassing through the fracture networks, applicable to shallow conduit degassing in magmas containing crystal fractions of 0–0.42. This study contributes to our understanding of highly viscous magma outgassing and processes governing the effusive‐explosive transition.
Obsidian flow emplacement is a complex and understudied aspect of silicic volcanism. Of particular importance is the question of how highly viscous magma can lose sufficient gas in order to erupt effusively as a lava flow. Using an array of methods we study the extreme textural heterogeneity of the Rocche Rosse obsidian flow in Lipari, a 2 km long, 100 m thick,~800 year old lava flow, with respect to outgassing and emplacement mechanisms. 2D and 3D vesicle analyses and density measurements are used to classify the lava into four textural types: 'glassy' obsidian (b15% vesicles), 'pumiceous' lava (N 40% vesicles), high aspect ratio, 'shear banded' lava (20-40% vesicles) and low aspect ratio, 'frothy' obsidian with 30-60% vesicles. Textural heterogeneity is observed on all scales (m to μm) and occurs as the result of strongly localised strain. Magnetic fabric, described by oblate and prolate susceptibility ellipsoids, records high and variable degrees of shearing throughout the flow. Total water contents are derived using both thermogravimetry and infrared spectroscopy to quantify primary (magmatic) and secondary (meteoric) water. Glass water contents are between 0.08-0.25 wt.%. Water analysis also reveals an increase in water content from glassy obsidian bands towards 'frothy' bands of 0.06-0.08 wt.%, reflecting preferential vesiculation of higher water bands and an extreme sensitivity of obsidian degassing to water content. We present an outgassing model that reconciles textural, volatile and magnetic data to indicate that obsidian is generated from multiple shear-induced outgassing cycles, whereby vesicular magma outgasses and densifies through bubble collapse and fracture healing to form obsidian, which then re-vesiculates to produce 'dry' vesicular magma. Repetition of this cycle throughout magma ascent results in the low water contents of the Rocche Rosse lavas and the final stage in the degassing cycle determines final lava porosity. Heterogeneities in lava rheology (vesicularity, water content, microlite content, viscosity) play a vital role in the structural evolution of an obsidian flow and overprint flow-scale morphology. Post-emplacement hydration also depends heavily on local strain, whereby connectivity of vesicles as a result of shear deformation governs sample rehydration by meteoric water, a process previously correlated to lava vesicularity alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.