Varietal selection for yield from a series of multi-environment trials can be regarded as a multi-trait selection problem in which the yields in different environments are synonymous with traits. As such an analysis of the data combined across environments should be conducted in order to form an index for selection. Analytical methods that include appropriate models for both the genetic variance structure (that is, the variances and covariances of genotype effects from different environments) and the residual variance structure (which typically comprises spatial covariance models for each trial) have been published previously. In the case of perennial crops, yields are often obtained from multiple harvests which implies that the data comprise short sequences of repeated measurements. Varietal performance in individual harvests is important for selection so that a combined analysis across both trials and harvests is required. The repeated measures nature of the data provides additional modelling challenges. In this paper we propose an approach for the analysis of multi-environment, multi-harvest data that accommodates the major sources of variation and correlation (including temporal). The approach is illustrated using two examples from sugarcane breeding programmes. The proposed models were found to provide a superior fit to the data and thence more accurate selection decisions than the common practice of conducting separate analyses of individual trials and harvests.
Trials in the early stages of selection are often subject to variation arising from spatial variability and interplot competition, which can seriously bias the assessment of varietal performance and reduce genetic progress. An approach to jointly model both sources of bias is presented. It models genotypic and residual competition and also global and extraneous spatial variation. Variety effects were considered random and residual maximum likelihood was used for parameter estimation. Competition at the residual level was examined using two special simultaneous autoregressive models. An equal-roots second-order autoregressive (EAR(2)) model is proposed for trials where competition is dominant. An equal-roots third-order autoregressive (EAR(3)) model allows for competition and spatial variability. These models are applied to two yield data sets from an Australian sugarcane selection program. One data set is in the paper and the other is in supplementary material available online. To determine the effect of simultaneously adjusting for spatial variability and interplot competition on selection, the percentages of superior varieties in common in the top 15% for the joint model and classical approaches were compared. Agreement between the two approaches was 45 and 84%. Hence, for some trials there are large differences in varieties advanced to the next stage of selection.
Family selection has been used in several sugarcane breeding programs for many years, and has been shown to be superior to individual selection (also known as mass selection), in terms of gains from selection, resource efficiency, and cost of operation. Other breeding programs have expressed interest in family selection, but the technique has not been widely adopted for logistical reasons. Suggestions for overcoming the constraints to family selection are made. Family selection has also been shown to provide a superior method for estimating the breeding value of parent clones. Objective data on the performance of families provides invaluable information on the breeding performance of parent clones. Best Linear Unbiased Predictors (BLUPs) can be estimated for a range of traits from the results of family selection trials, and these are estimates of breeding value. In Australia, current research is aimed at improving the BLUP estimates by combining data across all selection programs, including family 9 environment interactions, and partitioning the genetic effects of each parent into additive and non-additive genetic effects.
Most sugarcane breeding programs in Australia use large unreplicated trials to evaluate clones in the early stages of selection. Commercial varieties that are replicated provide a method of local control of soil fertility. Although such methods may be useful in detecting broad trends in the field, variation often occurs on a much smaller scale. Methods such as spatial analysis adjust a plot for variability by using information from immediate neighbours. These techniques are routinely used to analyse cereal data in Australia and have resulted in increased accuracy and precision in the estimates of variety effects. In this paper, spatial analyses in which the variability is decomposed into local, natural, and extraneous components are applied to early selection trials in sugarcane. Interplot competition in cane yield and trend in sugar content were substantial in many of the trials and there were often large differences in the selections between the spatial and current method used by the Bureau of Sugar Experiment Stations. A joint modelling approach for tonnes sugar per hectare in response to fertility trends and interplot competition is recommended.
Sugarcane breeders in Australia combine data across four selection programs to obtain estimates of breeding value for parents. When these data are combined with full pedigree information back to founding parents, computing limitations mean it is not possible to obtain information on all parents. Family data from one sugarcane selection program were analysed using two different genetic models to investigate how different depths of pedigree and amount of data affect the reliability of estimating breeding value of sugarcane parents. These were the parental and animal models. Additive variance components and breeding values estimated from different amounts of information were compared for both models. The accuracy of estimating additive variance components and breeding values improved as more pedigree information and historical data were included in analyses. However, adding years of data had a much larger effect on the estimation of variance components of the population, and breeding values of the parents. To accurately estimate breeding values of all sugarcane parents, a minimum of three generations of pedigree and 5 years of historical data were required, while more information (four generations of pedigree and 7 years of historical data) was required when identifying top parents to be selected for future cross pollination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.