Conventional thin-film processing techniques remain inadequate for obtaining superior dense ceramic thick films. The incompatibility of ceramic films prepared via other methods, such as screen printing, spin coating, and sputtering, is a major obstacle in the fabrication of thick film-based ceramic electronic components. The granule spray in vacuum (GSV) processes and aerosol deposition (AD) are important coating approaches for forming dense ceramic thick films featuring nanoscale crystallite structures at room temperature, which offer excellent material properties and facilitate cost-effective production. AD ceramic coatings require the acceleration of solid-state submicron ceramic particles via gas streams with a velocity of a few hundred meters per second, which are then wedged onto a substrate. This process is economical and particularly useful for the fabrication of piezoelectric thick film-based microactuators, energy harvesters, sensors, and optoelectronic devices. More recently, the GSV technique was improved to achieve more uniform and homogeneous film deposition after AD. This review article presents a detailed overview of the AD and GSV processes for piezoelectric thick films in terms of recent scientific and technological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.