A study was conducted to investigate the change in quality attributes of red pepper (paprika) (Capsicum annuum L. var. Km-622) as a function of ripening and some technological factors. Of quality attributes, carotenoids and bioantioxidants (ascorbic acid and tocopherols) have been studied. It was found that the dynamics of fruit ripening with regard to carotenoids and bioantioxidants was influenced to a considerable extent by weather conditions of the production season. A rainy and cool season yielded fruits with more beta-carotene but less diesters of red xanthophylls as compared to those produced in a relatively dry and warm season. The ripening stage at harvest was found to affect the quality of paprika. Harvest at unripe stages (color break or faint red) resulted in a high accumulation of dehydroascorbic acid in the overripe fruits, whereas de novo biosynthesis of carotenoids and tocopherols was partially retarded. Application of pre-drying centrifugation resulted in a marked loss of ascorbic acid, and as a consequence, carotenoid stability was impaired during the storage of ground paprika. Sugar caramelization caused dry pods and ground paprika to retain more pigments and tocopherol as compared to those from control or centrifuged red pepper samples. During the storage of ground paprika, color stability was improved by grinding the seeds with the pericarp.
The major carotenoids and carotenoid esters in Capsicum annuum L. during thermal dehydration of pepper and storage of the ground product (paprika) were examined with special focus on the role of endogenous antioxidants such as vitamins E and C and capsaicinoids, the pungent materials in hot spice red pepper. A high-performance liquid chromatographic (HPLC) method was developed to achieve excellent separation and accurate detection of different carotenoid classes including free xanthophylls, monoesters, carotenes and di-esters. The newly developed method included gradient elution on a reversed-phase column with increasing proportions of isopropanol. The results indicated that presence of capsaicinoids in pungent pepper had a favourable effect on the stability of carotenoids during thermal drying. Among various di-esters those of lutein and zeaxanthine, as well as the mono-ester of β-cryptoxanthin were more stable than those of capsorubin and capsanthin, pointing to the possible role of epoxide and carbonyl groups in the susceptibility of carotenoids. An Arrhenius plot for degradation of carotenoids, tocopherols and ascorbic acid as a function of drying temperature showed linear relationships for all components, with ascorbic acid being the most sensitive. During storage in a refrigerator for 3 months the paprika showed high degradation of all the examined carotenoids particularly in samples prepared from pods dried at high temperatures (90 and 100 • C). An exception was for β-cryptoxanthin mono-ester and violaxanthin di-esters in a non-pungent variety. The amounts of these carotenoids lost during storage were slightly affected by the change in drying temperature. Strong correlation was found between retention of colour in stored paprika and the initial content of ascorbic acid, but not with that of tocopherols or capsaicinoids.
In the present work, bio and conventional forms of spice red pepper were analysed using various high performance liquid chromatographic (HPLC) systems for their carotenoid, tocopherol and vitamin C contents. The carotenoid pigment was fractionated into free xanthophylls, monoesters, carotenes and diesters with newly developed reversed phase HPLC, while α-, β-and γ-isomers of vitamin E were separated by normal phase chromatography. Ion-pair chromatography on a C-18 column provided good separation and quantification of vitamin C. The peppers included new resistant varieties and hybrids that are essential for bio-production. It was found that crossing new disease-resistant varieties such as Kaldom and Kalorez with susceptible ones such as Rubin and SZ-20 produced resistant hybrids that contained higher levels of quality components compared to the parents, particularly when grown and cultivated under organic farming conditions.
Hungarian spice pepper powder is a unique product, a real hungaricum with its flavour and aroma compounds and seasoning effect. Its competitiveness with foreign spice peppers is ensured by its high biological value deriving from the specially Hungarian production and processing technology. Besides the traditional and highly manual labour intensive processing technology, there are some modern industrial technologies as well, where high quality can be guaranteed only by producing excellent base material (raw pepper pods). This is the reason which necessitates the rational development of the elements of the production technology, such as nutrient supply. Our objective was to offer a contribution to this aim by our trials in plant nutrition. Experiments on the nutrient supply of spice pepper were set up in the 2003 growing season in order to decide whether yields and fruit composition parameters of pepper could be increased by means of increased K fertiliser doses with lower N:K ratios. Several forms of potassium were used, as well as applying microelement top dressings in the single treatments. It was found that the increase of N:K ratio from I:1 to 1:6 did not increase yields, but resulted in higher pigment and dry matter content. Microelement top dressing had a yield increasing effect at each N:K ratio. Higher potassium doses did not accelerate ripening.
With a view to further enhance the reputation of Hungarian spice pepper it was necessary to improve resistance to the bacterium Xanthomonas campestris pv.vesicatoria, the most dangerous pathogen of pepper varieties. From among the familiar resistance genes in Hungary only the gene Bs-2 could provide sufficient protection against the aggressiveness spectrum of the bacterium species X.c.pv. vesicatoria. The first results of the resistance breeding are the spice pepper varieties Kaldom and Kalorez. In addition to the Bs-2 gene attempts are also being made at building in a gds gene into pepper, a gene creating a general defense system, a different strategy towards Xanthomonas campestris pv. vesicatoria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.