A novel atmospheric pressure plasma jet with a cylindrical symmetry i.e. a tubular dielectric barrier and two tubular electrodes was developed at Microstructure Research Center – fmt, Wuppertal, Germany. The jet was investigated by means of ultra fast (down to tens of nanoseconds exposition time) ICCD photography and regular CCD photography. Some spectacular results were achieved and their partial explanation was presented. The jet acts as a “plasma gun” throwing small “plasma bullets” out of its orifice. The most important findings are: (i) the bullet velocity is approximately 3 orders of magnitude larger than the gas flow velocity, and (ii) the jet dynamics is mainly electrical field controlled. A simple model - formation of a jet in air - based on a Helium metastables core can explain qualitatively reasonably well most of our experimental observations. Some variations of the original cylindrical jet geometry were presented and discussed: microjet and fmt Plasma-Pen, single tube multijet, tube-in-tube single and multijet systems (so-called “Wuppertal-Approach”).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.