Field studies on the island of Elba and seismic lines from the Northern Tyrrhenian Sea, Italy, indicate that major extensional displacements were accommodated along east-dipping low-angle detachment faults. The rifting and subsidence in the Northern Tyrrhenian Sea basin have followed convergence and collision of the Corso-Sardinian block and the Apulian microplate. This collisional episode produced the Northern Apennines fold-and-thrust belt. Major extensional faults cut down-section through the stratigraphy and pre-existing west-dipping thrust faults. West-dipping thrusts can also be reactivated and form antithetic faults to the east-dipping detachments. Brittle deformation conditions predominated during the extensional phase. The geometry, internal structure and the fabrics (brittle and penetrative) associated with a wellexposed low-angle extensional detachment in Elba are presented in this paper. A geometrical model for the brittle extensional faulting is presented in which regional extension was accommodated on a system consisting of two sets of simultaneously active antithetic faults. The east-dipping detachment faults appear to have started at steeper angles, based on field and seismic observations, and rotated counter-clockwise to lower dips. Due to this rotation, and for space accommodation, antithetic west-dipping faults formed and rotated clockwise. A tectonic model is proposed whereby slowing of the convergence between Apulia and Corsica, as well as Tethys oceanic crust and Apulian crust subduction, led to the delamination of the Apulian lithospheric mantle away from the crust. Accompanying asthenospheric upwelling and intrusion at the crust-mantle interface beneath the Tyrrhenian Sea caused late orogenic crustal stretching in the Northern Apennines internal zone.
The Carboneras fault system is a 40 km long, 1 km wide Neogene NE-SW-trending left-lateral transpressional strike-slip fault system which is part of the Trans-Alboran shear zone in SE Spain. The Carboneras fault system is an anastomosing array of sub-vertical, individual fault planes or fault zones which surround pods or lenses of less intensely strained rocks. Displacements along the individual fault planes exhibit reverse components of slips and form positive flower structures. Faults have either sharp boundaries or wider bands of gouge, typically a few metres thick and are hundreds of metres in length. Second-order fault splays are well developed and usually exhibit P-shear rather than Riedel-shear orientations. These are interpreted to be related to the transpressional displacement and may also characterize other oblique convergent zones elsewhere. The second-order faults are interpreted to have formed as shear strain increased along the first-order fault and was transferred laterally to branch segments. This process produced pods, or shear lenses, bounded by the fault segments. The length to width aspect ratios of the shear lenses were found to be scale-independent across five orders of magnitude with the most common values between 3:l and 6:l. A model is proposed for the development of the fault zone by incremental finite displacements along the segmented fault surfaces. This model is based on field evidence that displacement switched with time from one fault strand to another.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.