R-loops are three-stranded nucleic acid structures that accumulate on chromatin in neurological diseases and cancers and contribute to genome instability. Using a proximity-dependent labeling system, we identified distinct classes of proteins that regulate R-loops in vivo through different mechanisms. We show that ATRX suppresses R-loops by interacting with RNAs and preventing R-loop formation. Our proteomics screen also discovered an unexpected enrichment for proteins containing zinc fingers and homeodomains. One of the most consistently enriched proteins was activity-dependent neuroprotective protein (ADNP), which is frequently mutated in ASD and causal in ADNP syndrome. We find that ADNP resolves R-loops in vitro and that it is necessary to suppress R-loops in vivo at its genomic targets. Furthermore, deletion of the ADNP homeodomain severely diminishes R-loop resolution activity in vitro, results in R-loop accumulation at ADNP targets, and compromises neuronal differentiation. Notably, patient-derived human induced pluripotent stem cells that contain an ADNP syndrome-causing mutation exhibit R-loop and CTCF accumulation at ADNP targets. Our findings point to a specific role for ADNP-mediated R-loop resolution in physiological and pathological neuronal function and, more broadly, to a role for zinc finger and homeodomain proteins in R-loop regulation, with important implications for developmental disorders and cancers.
ATRX is a chromatin remodeler, which is mutated in ATRX syndrome, a neurodevelopmental disorder. ATRX mutations that alter histone binding or chromatin remodeling activities cluster in the PHD finger or the helicase domain respectively. Using engineered mouse embryonic stem cells that exclusively express ATRX protein with mutations in the PHD finger (PHDmut) or helicase domains (K1584R), we examine how specific ATRX mutations affect neurodifferentiation. ATRX PHDmut and K1584R proteins interact with the DAXX histone chaperone but show reduced localization to pericentromeres. Neurodifferentiation is both delayed and compromised in PHDmut and K1584R, and manifest differently from complete ATRX loss. We observe reduced enrichment of PHDmut protein to ATRX targets, while K1584R accumulates at these sites. Interestingly, ATRX mutations have distinct effects on the genome-wide localization of the polycomb repressive complex 2 (PRC2), with PHDmut and ATRX knockout showing reduced PRC2 binding at polycomb targets and K1584R showing loss at some sites and gains at others. Notably, each mutation associated with unique gene signatures, suggesting distinct pathways leading to impaired neurodifferentiation. Our results indicate that the histone binding and chromatin remodeling functions of ATRX play non-redundant roles in neurodevelopment, and when mutated lead to ATRX syndrome through separate regulatory pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.