Time-dependent flows are notoriously challenging for classical linear stability analysis. Most progress in understanding the linear stability of these flows has been made for time-periodic flows via Floquet theory focusing on time-asymptotic stability. However, little attention has been given to the transient intracyclic linear stability of periodic flows since no general tools exist for its analysis. In this work, we explore the potential of using the recent framework of the optimally time-dependent (OTD) modes (Babaee & Sapsis, Proc. R. Soc. Lond. A, vol. 472, 2016, 20150779) to extract information about both the transient and the time-asymptotic linear stability of pulsating Poiseuille flow. The analysis of the instantaneous OTD modes in the limit cycle leads to the identification of the dominant instability mechanism of pulsating Poiseuille flow by comparing them with the spectrum and the eigenmodes of the Orr–Sommerfeld operator. In accordance with evidence from recent direct numerical simulations, it is found that structures akin to Tollmien–Schlichting waves are the dominant feature over a large range of pulsation amplitudes and frequencies but that for low pulsation frequencies these modes disappear during the damping phase of the pulsation cycle as the pulsation amplitude is increased beyond a threshold value. The maximum achievable non-normal growth rate during the limit cycle was found to be nearly identical to that in plane Poiseuille flow. The existence of subharmonic perturbation cycles compared with the base flow pulsation is documented for the first time in pulsating Poiseuille flow.
Spectral degeneracies where eigenvalues and eigenvectors simultaneously coalesce, also known as exceptional points, are a natural consequence of the strong non-normality of the Orr–Sommerfeld operator describing the evolution of infinitesimal disturbances in parallel shear flows. While the resonances associated with these points give rise to algebraic growth, the development of non-modal stability theory exploiting specific perturbation structures with much larger potential for transient energy growth has led to waning interest in spectral degeneracies. The appearance of subharmonic eigenvalue orbits, recently discovered in the periodic spectrum of pulsating Poiseuille flow, can be traced back to the coalescence of eigenvalues at exceptional points. We present a thorough analysis of the spectral properties of the linear operator to identify exceptional points and accurately map the prevalence of subharmonic eigenvalue orbits for a large range of pulsation amplitudes and frequencies. This information is then combined with solutions of the linear initial value problem to analyse the impact of the appearance of these orbits on the temporal evolution of linear disturbances in pulsating Poiseuille flow. The periodic amplification phases are shown to be heralded by repeated non-normal growth bursts that are intensified by the formation of subharmonic orbits involving the leading eigenvalues. These bursts are associated with the change of alignment of the perturbation from the decaying towards the amplified branch of the subharmonic eigenvalue orbits in a so-called branch transition process.
Absorbance-based sensors produce large raw attenuation datasets. We developed AbspectroscoPY, an open-source Python toolbox to implement semi-automated processing of these data and explore the full potential of high-frequency measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.