Abstract. Genetically distinct anadromous (sockeye) and nonanadromous (kokanee) morphs of the Pacific salmon, Oncorhynchus nerka, develop identical, brilliant red color at maturity during sympatric breeding in freshwater streams. The marine and lacustrine environments they occupy prior to maturity, however, appear to differ in the availability of dietary carotenoid pigments necessary to produce red coloration. We tested the hypothesis that kokanee, which occupy carotenoid-poor lakes, are more efficient at using the dietary pigments than are sockeye, which occupy the more productive North Pacific Ocean. In a 2-year controlled breeding study, flesh and skin color of mature and immature crosses fed a low-carotenoid diet were quantified with both a chromameter and by chemical extraction of carotenoid pigments. Results revealed striking countergradient variation in carotenoid use, with kokanee approximately three times more efficient at sequestering the pigments to the flesh musculature than similar age sockeye. This difference translated into virtually nonoverlapping differences between pure crosses in secondary sexual color at maturity, when the pigments are mobilized and transported to the skin. Kokanee crosses turned pinkish red over most of their body, whereas sockeye turned olive green. The olive green was similar to the breeding color of residuals in the wild, the progeny of anadromous sockeye that remain in fresh water and are believed to have given rise to kokanee on numerous independent occasions. Reciprocal hybrids were similar to each other and intermediate to the pure crosses, indicating additive genetic inheritance. Mate choice trials with sockeye males in the wild showed the ancestral morph strongly preferred red over green models. These results suggest a preference for red mates maintained in nonanadromous breeding populations drove the reevolution of the red phenotype in kokanee via more efficient use of dietary carotenoid pigments. This is a novel, yet hidden, mechanism by which sexual selection promotes the genetic differentiation of these sympatric populations.
The northwestern Gulf of Mexico shelf experiences the largest seasonal hypoxic (dissolved oxygen, DO ≤ 2.0 mg l −1 ) zone in the western hemisphere. This study uses bottom trawl and hydrographic surveys over 3 yr to quantify low DO avoidance thresholds, patterns of aggregation in nearby oxygenated refuge habitats, and spatial overlap of brown shrimp Farfantepenaeus aztecus and several finfishes on the nearshore Louisiana shelf. On average, DO avoidance thresholds were low (1 to 3 mg l −1 ) and near incipient lethal levels for similar species, suggesting organisms avoid the lowest, lethal DO levels on the shelf. Avoidance thresholds varied both within and among years, indicating that behavioral responses to low DO are context-dependent and vary in relation to the severity of hypoxia and possibly other factors. Despite the absence of physical barriers to movement, evading organisms aggregated at short distances (1 to 3 km) just beyond the margins of the hypoxic zone, indicating that sublethal and indirect effects of hypoxia are probably most intense within a relatively narrow region along the hypoxic edge. DO avoidance thresholds and patterns of aggregation were similar between brown shrimp, the primary target of the commercial shrimp trawl fishery, and several juvenile and small adult finfishes that comprise most of the bycatch. In addition, spatial overlap between brown shrimp and finfishes was highest in the years when hypoxia was most severe, and this effect was stronger for benthic fishes than for pelagic fishes. These results suggest the potential for enhanced harvest and bycatch interactions along the margins of the hypoxic zone as an indirect effect of hypoxia-induced shifts in spatial patterns. Such spatially mediated indirect effects are an important means by which hypoxia influences mobile species in the Gulf.
Seasonal, summertime hypoxia (dissolved oxygen ≤ 2 mg l -1 ) has occurred over large areas (~1000 to 20 000 km 2 ) of the northwestern Gulf of Mexico shelf during several years since at least the mid-1980s, resulting in habitat loss for demersal species. To evaluate the effects of hypoxiainduced habitat loss on Atlantic croaker Micropogonias undulatus and brown shrimp Farfantepenaeus aztecus, we compared species' spatial distributions and relationships to abiotic factors (temperature, dissolved oxygen, salinity) across years differing in the spatial extent of hypoxia. Analysis of 14 yr of fishery-independent research trawl and environmental data (July) indicated that hypoxiainduced shifts in spatial distribution result in considerable shifts in the temperature and oxygen conditions that croaker and brown shrimp experience. Croaker, which typically occupy relatively warm, inshore waters, remain in the warmest waters inshore of the hypoxic region but also are displaced to cooler offshore waters. Brown shrimp, which are typically distributed more broadly and further offshore, shift to relatively warm inshore waters as well as cooler waters near the offshore hypoxic edge. These shifts in the species' spatial distribution are reflected in long-term decreases and increases in the mean temperatures occupied by croaker and brown shrimp, respectively, as well as increases in the variance in occupied temperatures for both species. Despite avoidance of the lowest oxygen waters, high densities of croaker and brown shrimp occur in areas of moderately low oxygen concentration (35 to 60% air saturation, 1.6 to 3.7 mg l -1 ) near the offshore hypoxic edge. Because temperature and dissolved oxygen are important abiotic factors that impact metabolic scope, these shifts in spatial distribution during severe hypoxia may impact organism energy budgets. High croaker and shrimp densities near the hypoxic edge likely have implications for trophic interactions as well as the harvest of both target (brown shrimp) and nontarget (croaker) species by the commercial shrimp fishery.
Coastal acidification in southeastern U.S. estuaries and coastal waters is influenced by biological activity, runoff from the land, and increasing carbon dioxide in the atmosphere. Acidification can negatively impact coastal resources such as shellfish, finfish, and coral reefs, and the communities that rely on them. Organismal responses for species located in the U.S. Southeast document large negative impacts of acidification, especially in larval stages. For example, the toxicity of pesticides increases under acidified conditions and the combination of acidification and low oxygen has profoundly negative influences on genes regulating oxygen consumption. In corals, the rate of calcification decreases with acidification and processes such as wound recovery, reproduction, and recruitment are negatively impacted. Minimizing the changes in global ocean chemistry will ultimately depend on the reduction of carbon dioxide emissions, but adaptation to these changes and mitigation of the local stressors that exacerbate global acidification can be addressed locally. The evolution of our knowledge of acidification, from basic understanding of the problem to the emergence of applied research and monitoring, has been facilitated by the development of regional Coastal Acidification Networks (CANs) across the United States. This synthesis is a product of the Southeast Coastal and Ocean Acidification Network (SOCAN). SOCAN was established to better understand acidification in the coastal waters of the U.S. Southeast and to foster communication among scientists, resource managers, businesses, and governments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.