The cyclic decapeptides polymyxin B (PmB) and E (PmE) (mo-K'TK'-cyclo-[K'K'XLK'K'T]; mo, methyl octanoate; K', diaminobutyric acid; X, D-Phe (PmB) or D-Leu (PmE)) display antimicrobial and lipopolysaccharide (LPS) antagonistic activities. We have investigated the conformational behavior of PmB and PmE in water solution, free and bound to LPS, by homonuclear NMR and molecular modeling methods. The free peptides exist in equilibria of fast exchanging conformations with local preferences for a distorted type II' beta-turn from residues 5-8, and/or a gamma-turn in residue 10. These two motifs are not present in the bound conformation of the peptides. The latter is amphiphilic separating the two hydrophobic residues in the cycle from the positively charged diaminobutyric acid side chains by an envelope-like fold of the cycle. The bound conformation is used for the derivation of a model of the PmB-lipid A complex based on electrostatic interactions and reduction of hydrophobic area. The proposed mode of binding breaks up the supramolecular structure of LPS connected with its toxicity. The model should contribute to the understanding of entropy-driven PmB-lipid A binding at the molecular level and assist the design of inhibitors of endotoxic activity.
This review covers two important techniques, high resolution nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), used to characterize food products and detect possible adulteration of wine, fruit juices, and olive oil, all important products of the Mediterranean Basin. Emphasis is placed on the complementary use of SNIF-NMR (site-specific natural isotopic fractionation nuclear magnetic resonance) and IRMS (isotope-ratio mass spectrometry) in association with chemometric methods for detecting the adulteration.
Synthesis of proteases as inactive zymogens is a very important mechanism for the regulation of their activity. For lysosomal proteases proteolytic cleavage of the propeptide is triggered by the acidic pH. By using fluorescence, circular dichroism, and NMR spectroscopy, we show that upon decreasing the pH from 6.5 to 3 the propeptide of cathepsin L loses most of the tertiary structure, but almost none of the secondary structure is lost. Another partially structured intermediate, prone to aggregation, was identified between pH 6.5 and 4. The conformation, populated below pH 4, where the activation of cathepsin L occurs, is not completely unfolded and has the properties of molten globule, including characteristic binding of the 1-anilinonaphthalene-8-sulfonic acid. This pH unfolding of the propeptide parallels a decrease of its affinity for cathepsin L and suggests the mechanism for the acidic zymogen activation. Addition of anionic polysaccharides that activate cathepsin L already at pH 5.5 unfolds the tertiary structure of the propeptide at this pH. Propeptide of human cathepsin L which is able to fold independently represents an evolutionary intermediate in the emergence of novel inhibitors originating from the enzyme proregions.All lysosomal and most other proteases are synthesized in the form of inactive precursors (1, 2). Propeptides are generally located N-terminal to the mature enzyme, and activation of the enzyme is accomplished by cis-or trans-cleavage of the propeptide. Propeptides vary from a few (e.g. trypsin) to more than 200 residues (e.g. cathepsin C). Longer propeptides are generally strong and specific inhibitors of their mature enzymes (3-7). In most cases propeptides are also indispensable for correct folding of the enzymes (8). In some enzymes folding of the mature form is extremely slow, and the propeptide assists in overcoming the kinetic barrier (9), which may also be overcome by physicochemical factors such as high ionic strength in subtilisin, for example (10). Proenzymes are quite often more stable than mature enzymes (11, 12) and can represent a pool of latent enzyme until the activation occurs in the proper conditions. Propeptides are also involved in targeting to specific organelles (13, 14); they can affect posttranslational modification such as glycosylation (15) and mediate interactions with other molecules (16,17). Propeptides can be cleaved either by other proteases or by intra-or intermolecular autocatalysis. pH change is one of the most common environmental parameters responsible for triggering the activation of proteases, occurring in cysteine, aspartic acid, and metalloproteases (1,18,19). Low pH is thought either to increase the susceptibility of the propeptide as a substrate due to the protonation of groups close to the cleavage site or to cause a conformational change in the propeptide or enzyme.Cathepsin L is one of the most active cysteine proteases and accounts for most of the lysosomal cysteine protease activity (20). It has been implicated in a range of processes incl...
Lipo-poly-saccharide (LPS) induced Gram-negative sepsis and septic shock remain lethal in up to 60 % of cases, and LPS antagonists that neutralize its endotoxic action are the subject of intensive research. The molecular motifs of specific binding of LPS by antiendotoxin proteins and peptides may lead to an understanding of LPS action at the atomic level and provide clues for the development of new immunomodulatory compounds for use as therapy in the treatment of Gram-negative bacterial sepsis. The interaction of LPS with its cognate binding proteins has been structurally elucidated in the single case of the X-ray crystallographic structure of LPS in complex with the integral outer membrane protein FhuA from E. coli K-12 (Ferguson et al., Science 1999, 282, 2215). This structure and other known structures of LPS binding proteins have been used to propose a common binding motif of LPS to proteins. Another independent source of structural information are solution structures of peptides in complex with LPS that can be determined using the transferred NOE effect. The molecular mechanisms of biological activity of bacterial endotoxins can additionally be probed by theoretical means. The growing structural knowledge is opening pathways to the design of peptides or peptidomimetics with improved antiendotoxin properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.