EXTEND (EXTra-uterine Environment for Neonatal Development) is a novel system that promotes physiological development by maintaining the premature lamb in a sterile fluid environment and providing gas exchange via a pumpless arteriovenous oxygenator circuit. During the development of EXTEND, different cannulation strategies evolved with the aim of improving circuit flow. The present study examines how different cannulation strategies affect EXTEND circuit haemodynamics in extreme premature lambs. Seventeen premature lambs were cannulated at gestational ages 105-117 days (term 145-150 days) and supported on EXTEND for up to 4 weeks. Experimental groups were distinguished by cannulation strategy: carotid artery outflow and jugular vein inflow (CA/JV; n = 4), carotid artery outflow and umbilical vein inflow (CA/UV; n = 5) and double umbilical artery outflow and umbilical vein inflow (UA/UV; n = 8). Circuit flows and pressures were measured continuously. As we transitioned from CA/JV to CA/UV to UA/UV cannulation, mean duration of circuit run and weight-adjusted circuit flows increased (P < 0.001) and the frequency of flow interruptions declined (P < 0.05). Umbilical vessels generally accommodated larger-bore cannulas, and cannula calibre was directly correlated with circuit pressures and indirectly correlated with flow:pressure ratio (a measure of post-membrane resistance). We conclude that UA/UV cannulation in fetal lambs on EXTEND optimizes circuit flow dynamics and flow stability and also supports circuit flows that closely approximate normal placental flow.
Objective: Most cases of idiopathic nephrotic syndrome in childhood are responsive to corticosteroids. However, there is a small group of children that demonstrate steroid resistance (steroid-resistant nephrotic syndrome; SRNS), steroid dependence, or that frequently relapse (frequent-relapse steroid-sensitive nephrotic syndrome; FR-SSNS) which are more clinically difficult to treat. Therefore, second-line immunosuppressants, such as alkylating agents, calcineurin inhibitors, antimetabolites and, more recently, rituximab, have been used with varying success. The objective was to evaluate the response rates of various second-line therapies in the treatment of childhood nephrotic syndrome. Study Design: A retrospective chart review of pediatric subjects with idiopathic nephrotic syndrome was conducted at a single tertiary care center (2007-2012). Drug responses were classified as complete response, partial response, and no response. Results: Of the 188 charts reviewed, 121 children were classified as SSNS and 67 children as SRNS; 58% were classified as FR-SSNS. Sixty-five subjects were diagnosed with focal segmental glomerulosclerosis via biopsy. Follow-up ranged from 6 months to 21 years. The combined rate of complete and partial response for mycophenolate mofetil (MMF) was 65% (33/51) in SSNS and 67% (6/9) in SRNS. For tacrolimus, the response rate was 96% (22/23) for SSNS and 77% (17/22) for SRNS. Eighty-three percent (5/6) of SSNS subjects treated with rituximab went into complete remission; 60% relapsed after B-cell repletion. Eight refractory subjects were treated with combined MMF/tacrolimus/corticosteroid therapy with a 75% response rate. Conclusion: Our experience demonstrates that older medications can be replaced with newer ones such as MMF, tacrolimus, and rituximab with good outcomes and better side effect profiles. The treatment of refractory cases with combination therapy is promising.
The impact of incretins upon pancreatic β-cell expansion remains extremely controversial. Multiple studies indicate that incretin-based therapies can increase β-cell proliferation, and incretins have been hypothesized to expand β-cell mass. However, disagreement exists on whether incretins increase β-cell mass. Moreover, some reports indicate that incretins may cause metaplastic changes in pancreatic histology. To resolve these questions, we treated a large cohort of mice with incretin-based therapies and carried out a rigorous analysis of β-cell turnover and pancreatic histology using high-throughput imaging. Young mice received exenatide via osmotic pump, des-fluoro-sitagliptin, or glipizide compounded in diet for 2 weeks (short-term) on a low-fat diet (LFD) or 4.5 months (long-term) on a LFD or high-fat diet (HFD). Pancreata were quantified for β-cell turnover and mass. Slides were examined for gross anatomical and microscopic changes to exocrine pancreas. Short-term des-fluoro-sitagliptin increased serum insulin and induced modest β-cell proliferation but no change in β-cell mass. Long-term incretin therapy in HFD-fed mice resulted in reduced weight gain, improved glucose homeostasis, and abrogated β-cell mass expansion. No evidence for rapidly dividing progenitor cells was found in islets or pancreatic parenchyma, indicating that incretins do not induce islet neogenesis or pancreatic metaplasia. Contrasting prior reports, we found no evidence of β-cell mass expansion after acute or chronic incretin therapy. Chronic incretin administration was not associated with histological abnormalities in pancreatic parenchyma; mice did not develop tumors, pancreatitis, or ductal hyperplasia. We conclude that incretin therapies do not generate β-cells or alter pancreatic histology in young mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.