The identification of new therapeutic uses for existing agents has been proposed as a means to mitigate the escalating cost of drug development. A common approach to such repurposing involves screening libraries of agents for activities against cell lines. In silico methods using knowledge from the biomedical literature have been proposed to constrain the costs of screening by identifying agents that are likely to be effective a priori. However, results obtained with these methods are seldom evaluated empirically. Conversely, screening experiments have been criticized for their inability to reveal the biological basis of their results. In this paper, we evaluate the ability of a scalable literature-based approach, discovery-by-analogy, to identify a small number of active agents within a large library screened for activity against prostate cancer cells. The methods used permit retrieval of the knowledge used to infer their predictions, providing a plausible biological basis for predicted activity.
Ku70, a known nonhomologous end-joining (NHEJ) factor, also functions in tumor suppression, although this molecular mechanism remains uncharacterized. Previously, we showed that mice deficient for DNA ligase IV (Lig4), another key NHEJ factor, succumbed to aggressive lymphoma in the absence of tumor suppressor p53. However, the tumor phenotype is abrogated by the introduction of a hypomorphic mutant p53R172P, which impaired p53-mediated apoptosis but not cell-cycle arrest. However, Lig4−/−p53R172P mice succumbed to severe diabetes. To further elucidate the role of NHEJ and p53-mediated apoptosis in vivo, we bred Ku70−/−p53R172P mice. Unexpectedly, these mice were free of diabetes, although 80% of the mutant mice had abnormally enlarged colons with pronounced inflammation. Remarkably, most of these mutant mice progressed to dysplasia, adenoma and adenocarcinoma; this is in contrast to the Lig4−/−p53R172P phenotype, strongly suggesting an NHEJ-independent function of Ku70. Significantly, our analyses of Ku70−/−p53R172P colonic epithelial cells show nuclear stabilization of β-catenin accompanied by higher expression of cyclin D1 and c-Myc in affected colon sections than in control samples. This is not due to the p53 mutation, as Ku70−/− mice share this phenotype. Our results not only unravel a novel function of Ku70 essential for colon homeostasis, but also establish an excellent in vivo model in which to study how chronic inflammation and abnormal cellular proliferation underlie tumorigenesis and tumor progression in the colon.
SummaryBackground: Testosterone deficiency (TD, total testosterone ≤350 ng/dL
Checkpoint immunotherapy has yielded meaningful responses across many cancers but has shown modest efficacy in advanced prostate cancer. B7 homolog 3 protein (B7-H3/ CD276 ) is an immune checkpoint molecule and has emerged as a promising therapeutic target. However, much remains to be understood regarding B7-H3’s role in cancer progression, predictive biomarkers for B7-H3–targeted therapy, and combinatorial strategies. Our multi-omics analyses identified B7-H3 as one of the most abundant immune checkpoints in prostate tumors containing PTEN and TP53 genetic inactivation. Here, we sought in vivo genetic evidence for, and mechanistic understanding of, the role of B7-H3 in PTEN/TP53- deficient prostate cancer. We found that loss of PTEN and TP53 induced B7-H3 expression by activating transcriptional factor Sp1. Prostate-specific deletion of Cd276 resulted in delayed tumor progression and reversed the suppression of tumor-infiltrating T cells and NK cells in Pten/Trp53 genetically engineered mouse models. Furthermore, we tested the efficacy of the B7-H3 inhibitor in preclinical models of castration-resistant prostate cancer (CRPC). We demonstrated that enriched regulatory T cells and elevated programmed cell death ligand 1 (PD-L1) in myeloid cells hinder the therapeutic efficacy of B7-H3 inhibition in prostate tumors. Last, we showed that B7-H3 inhibition combined with blockade of PD-L1 or cytotoxic T lymphocyte–associated protein 4 (CTLA-4) achieved durable antitumor effects and had curative potential in a PTEN/TP53 -deficient CRPC model. Given that B7-H3–targeted therapies have been evaluated in early clinical trials, our studies provide insights into the potential of biomarker-driven combinatorial immunotherapy targeting B7-H3 in prostate cancer, among other malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.