The Korea Superconducting Tokamak Advanced Research (KSTAR) project is the major effort of the national fusion programme of the Republic of Korea. Its aim is to develop a steady state capable advanced superconducting tokamak to establish a scientific and technological basis for an attractive fusion reactor. The major parameters of the tokamak are: major radius 1.8 m, minor radius 0.5 m, toroidal field 3.5 T and plasma current 2 MA, with a strongly shaped plasma cross-section and double null divertor. The initial pulse length provided by the poloidal magnet system is 20 s, but the pulse length can be increased to 300 s through non-inductive current drive. The plasma heating and current drive system consists of neutral beams, ion cyclotron waves, lower hybrid waves and electron cyclotron waves for flexible profile control in advanced tokamak operating modes. A comprehensive set of diagnostics is planned for plasma control, performance evaluation and physics understanding. The project has completed its conceptual design and moved to the engineering design and construction phase. The target date for the first plasma is 2002.
The Pohang Light Source (PLS) has operated for 14 years successfully. To meet the request of the increasing user community, the PLS-II that is the upgrade project of PLS has been completed. Main goals of the PLS-II are to increase beam energy to 3 GeV, to increase number of insertion devices by the factor of two (20 IDs), to increase beam current to 400 mA and to reduce beam emittance below 10 nm with existing PLS tunnel and injection system. The PLS-II had been commissioned over the six months. During commissioning, we achieved 14 insertion devices operation and top-up operation with 100 mA beam current and 5.8 nm beam emittance. In this paper, we report the experimental results from the PLS-II commissioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.