Coherent structures (CS) near the wall (i.e. y + ≤ 60) in a numerically simulated turbulent channel flow are educed using a conditional sampling scheme which extracts the entire extent of dominant vortical structures. Such structures are detected from the instantaneous flow field using our newly developed vortex definition (Jeong & Hussain 1995) - a region of negative λ2, the second largest eigenvalue of the tensor SikSkj + ΩikΩkj - which accurately captures the structure details (unlike velocity-, vorticity- or pressure-based eduction). Extensive testing has shown that λ2 correctly captures vortical structures, even in the presence of the strong shear occurring near the wall of a boundary layer. We have shown that the dominant near-wall educed (i.e. ensemble averaged after proper alignment) CS are highly elongated quasi-streamwise vortices; the CS are inclined 9° in the vertical (x, y)-plane and tilted ±4° in the horizontal (x, z)-plane. The vortices of alternating sign overlap in x as a staggered array; there is no indication near the wall of hairpin vortices, not only in the educed data but also in instantaneous fields. Our model of the CS array reproduces nearly all experimentally observed events reported in the literature, such as VITA, Reynolds stress distribution, wall pressure variation, elongated low-speed streaks, spanwise shear, etc. In particular, a phase difference (in space) between streamwise and normal velocity fluctuations created by CS advection causes Q4 ('sweep’) events to dominate Q2 ('ejection’) and also creates counter-gradient Reynolds stresses (such as Ql and Q3 events) above and below the CS. We also show that these effects are adequately modelled by half of a Batchelor's dipole embedded in (and decoupled from) a background shear U(y). The CS tilting (in the (x, z)-plane) is found to be responsible for sustaining CS through redistribution of streamwise turbulent kinetic energy to normal and spanwise components via coherent pressure-strain effects.
Summary
Background
Commensal bacteria are a major factor in human health and disease pathogenesis. Interest has recently expanded beyond the gastrointestinal microbiome to include the skin microbiome and its impact on various skin diseases.
Objectives
Here we present current data reviewing the role of the microbiome in dermatology, considering both the gut and skin microflora. Our objective was to evaluate whether the clinical data support the utility of oral and topical probiotics for certain dermatological diseases.
Methods
The PubMed and ClinicalTrials.gov databases were searched for basic science, translational research and clinical studies that investigated differences in the cutaneous microbiome and the impact of probiotics in patients with atopic dermatitis, acne vulgaris, psoriasis, chronic wounds, seborrhoeic dermatitis and cutaneous neoplasms.
Results
Few clinical trials exist that explore the utility of probiotics for the prevention and treatment of dermatological diseases, with the exception of atopic dermatitis. Most studies investigated oral probiotic interventions, and of those utilizing topical probiotics, few included skin commensals. In general, the available clinical trials yielded positive results with improvement of the skin conditions after probiotic intervention.
Conclusions
Oral and topical probiotics appear to be effective for the treatment of certain inflammatory skin diseases and demonstrate a promising role in wound healing and skin cancer. However, more studies are needed to confirm these results.
What's already known about this topic?
The microbiome plays a role in human health and disease pathogenesis.
Probiotics can manipulate the host microbiome and may confer health benefits for patients.
Research to date has already begun to explore the utility of oral and topical probiotics for certain dermatological diseases.
What does this study add?
This review presents basic science and clinical trial data to support the role of the gut and skin microbiome in dermatology.
Current data are reviewed on the use of probiotics in the prevention and treatment of skin diseases, including atopic dermatitis, acne vulgaris, psoriasis, seborrhoeic dermatitis, chronic wounds and cutaneous neoplasms.
Future probiotic interventions are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.