We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO-Virgo run in the detector frequency band ½10; 2000 Hz have been used. No significant detection was found and 95% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6 × 10 −26 at ≃142 Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass-boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.
Method and Materials:Eight packets of films were exposed to 13.5cm ×13.5cm, 6MV radiation fields in a solid water phantom. Dose levels of 1.1, 3.2, 5.3, 7.4, and 9.5 Gy were delivered to five films in each packet. Films were scanned both before and after irradiation using an Epson flat‐bed scanner (24hr wait‐time for post‐irradiation coloration). Corresponding 2D dose distributions were measured with a detector‐array (MatriXX). Point dose comparisons were performed with an ion chamber. Digitized film images were registered to the 2D dose distribution to generate a correction map that compensated the scanner non‐uniform response as a function of dose. Optical density (OD) and net optical density (NetOD) values were calculated for all images. Dose response curves were established using mean values of a central 0.5cm × 0.5cm region‐of‐interest (ROI). Images were converted to dose, and error uncertainties (1SD) were measured in the central 8cm × 8cm ROI. Results: The overall dosimetric uncertainties (1SD) of the NetOD approach were 2.2%, 1.9%, and 3.5% for red, green, and blue channels, respectively. The corresponding uncertainties of OD were 2.7%, 3.1%, and 8.3%, respectively. For low dose range (<3 Gy), the green channel revealed higher uncertainty (SDgreen= 3.3%) than the red channel (SDred=2.6%). However, for high doses (3∼9 Gy), the green channel showed less variability (SDgreen=1.6%, SDred=2.9%). Minimum SDred and SDgreen were 1.6% at 5.3Gy and 1.3% at 7.4 Gy, respectively. Scanner non‐uniformity correction mitigated the irregular response of scanner detector elements observed initially. Conclusion: NetOD may be a more useful metric for benchmarking EBT2 than OD. We demonstrated that the lowest dose uncertainties were achieved using the red channel for low dose range, while the green channel was preferred for higher doses. Scanner non‐uniformity correction is necessary for higher precision dosimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.