We report on a modeling technique that uses charge transport equations to calculate channel current in organic field effect transistors (OFETs) by numerical solution in the SPICE simulation program. SPICE is also used to optimize the model and achieve a fit to measured characteristics within 5% error. The overall modeling technique is a bridge between physical models of charge transport and a SPICE model useful in circuit simulation without requiring a closed-form drain-current equation. The automatic optimization of the simulation to measured curves will also allow, in the future, the empirical weighing of various charge transport effects in search of physical device operation, given sufficient empirical data. This modeling technique was applied to the measured characteristics of an OFET using pentacene in which the mobility was dependent on the voltage in the channel. The accuracy of the fit was better than 5% for 40 V > V DS > 7 V and better than 20% for V DS < 7 V. Simulation was completed within 3 min for this optimization on a modern personal computer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.