Photodarkening in Yb doped fibers was examined at 633 nm in-situ during cladding pumping at 915 nm with varying pump powers and with no indication of an onset threshold. For the first time, the partial bleaching of the photodarkening loss by the pump power itself was observed. We found the relaxation to well-defined equilibrium states of the core excess loss, depending on the Yb inversion. From the dependence of the measured rate constant on the density of excited Yb ions we conclude, that on average 3 to 4 excited Yb ions create or bleach one color center responsible for the core excess loss.
We report on photodarkening (PD) investigations at Yb doped fibers with specific variation of the concentrations of the codopants aluminum and phosphorus, measured during cladding pumping at 915 nm. A core composition with equal content of Al and P is most promising to achieve Yb fibers with low PD, high laser efficiency and low numerical aperture of the laser core despite of high codoping. A laser output power of more than 100 W was demonstrated on such a fiber with a slope efficiency of 72%. The correlation of the PD loss with the NIR-excited cooperative luminescence encourages the supposition that cooperative energy transfer from excited Yb(3+) ions to the atomic defect precursors in the core glass enables the formation of color centers in the pump-induced PD process.
Eighteen single mode fibres doped with different Rare Earth elements are exposed to 6oCo gamma radiation in order to estimate the radiation sensitivity of fibre amplifiers or fibre lasers and to find fibres with extremely high loss increase that are suited for dosimetry of low radiation levels.Induced loss measurements with varying dose rate confirmed the applicability of a simple dose rate tranformation method also to Rare Earth doped fibres.Operation of a ,,distributed" fibre optic radiation sensor is demonstrated at a dose rate of less than 0.1 Gy/d.
We report on the thermal treatment of photodarkened Yb-doped fiber samples. The method of non-isothermal bleaching at different temperature ramp rates can be used to determine the thermal energy distribution of photodarkening induced color centers. A distributed activation energy with a mean value of about 1.3 eV and a FWHM of 0.5 eV was found. Spectral changes during thermal treatment were observed and could be interpreted, e.g. as an enhancement of the absorption cross section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.