We report our study on the ultrafast dynamics of intermolecular interactions in liquid CCl4. A transient transmission time domain signal, obtained in the 40 ps delay range, exhibits beating at the difference frequency of the totally symmetric stretching vibrations of the tetrachloride isotopologues. We show that the spectra obtained as the windowed Fourier transform of different parts of the time domain signal in the range of this totally symmetric vibration, split due to the isotope effect, carry the information about the dynamics of the coherently excited, coupled molecules. We use a simple theoretical model in order to prove that the intermolecular interaction influences the relative amplitudes of the isotopologue peaks in the spectrum. Moreover, we demonstrate that the pump induced coherence in the system leads to additional strengthening of the interaction, which can be observed in the spectra obtained from the experimental time domain signal.
The interest in investigating the structure and reactivity of halogen- and methoxy-substituted benzaldehydes has been motivated by the practical relevance of these substances in various fields, from the fragrance industry to agrochemicals and drug manufacturing. In this study, 3-chloro-4-methoxybenzaldehyde (3CMBA) was investigated by matrix isolation infrared spectroscopy and quantum chemistry calculations. Molecules of the compound were isolated in cryogenic argon and xenon matrices and the conformational composition of the as-deposited materials characterized by infrared spectroscopy. Two nearly degenerated conformers, differing by the orientation of the aldehyde group relatively to the chlorine ring substituent, were successfully trapped into the matrices from the room temperature vapor of the compound, the cis conformer being slightly higher in energy than the trans form. Both conformers belong to the Cs point group and have the methoxy group pointing to the opposite direction of the chlorine atom. The as-deposited matrices of 3CMBA were then irradiated by tunable monochromatic UV-light. Irradiation within the 302–299 nm range induced conversion of the cis into the trans conformer, while irradiation in the 298–296 nm range induced the inverse photoisomerization. Irradiation at higher energy (250 nm) was found to lead to decarbonylation of both conformers. Very interestingly, the observed UV-induced processes were found to take place in an essentially selective way as a function of the irradiation wavelength. In particular, the conformational isomerization reactions of 3CMBA occur with only a residual number of molecules undergoing simultaneous decarbonylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.