An equation is derived for the dependence of the elastic properties of a porous material on the compressibility of the pore fluid. More generally, the elastic properties of a container of arbitrary shape are related to the compressibility of the fluid filling a cavity in the container. If the pore system or cavity under consideration is filled with a fluid of compressibility [Formula: see text], the compressibility κ* of the closed container is given by [Formula: see text] Here [Formula: see text] is the compressibility of the container with the fluid pressure held constant in the interconnected pore system or cavity. Fluids in other pores or cavities not connected with the one in question contribute to the value of [Formula: see text]. ϕ is the porosity, i.e., the volume fraction corresponding to the pore system or cavity in question. The equation contains two distinct effective compressibilities, [Formula: see text] and [Formula: see text], of the material exclusive of the pore fluid. When this material is homogeneous, one has [Formula: see text], and the equation reduces to a well‐known relation by Gassmann. For the other elastic properties, we also obtain expressions which generalize Gassmann’s work and which also differ from it only in the appearance of [Formula: see text] instead of [Formula: see text] in one term. Our result is intimately related to the reciprocity theorem of elasticity. Special cases are discussed.
The static conductivity and dielectric constant of two-component periodic composite material are calculated using the Fourier expansion technique. The composite material consists of spheres that are arranged in simple, face-centered, or body-centered cubic lattices. The spheres may be isolated to yield high porosity or pore space, or they may intercept each other, leaving small pore space in between. The effective static conductivity and dielectric constant of such structures are computed theoretically when the pore space is filled with a material that has a conductivity or dielectric constant which differs from that of the matrix of the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.