The mineralogy and evolution of Al and Mg in U mill tailings are poorly understood. Elemental analyses (ICP-MS) of both solid and aqueous phases show that precipitation of large masses of secondary Al and Mg mineral phases occurs throughout the raffinate neutralization process (pH 1-11) at the Key Lake U mill, Saskatchewan, Canada. Data from a suite of analytical methods (ICP-MS, EMPA, laboratory- and synchrotron-based XRD, ATR-IR, Raman, TEM, EDX, ED) and equilibrium thermodynamic modeling showed that nanoparticle-sized, spongy, porous, Mg-Al hydrotalcite is the dominant mineralogical control on Al and Mg in the neutralized raffinate (pH ≥ 6.7). The presence of this secondary Mg-Al hydrotalcite in mineral samples of both fresh and 15-year-old tailings indicates that the Mg-Al hydrotalcite is geochemically stable, even after >16 years in the oxic tailings body. Data shows an association between the Mg-Al hydrotalcite and both As and Ni and point to this Mg-Al hydrotalcite exerting a mineralogical control on the solubility of these contaminants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.