We probe the stability of Watts-Strogatz DC power grids, in which droop-controlled producers, constant power load consumers and power lines obey Kirchhoff's circuit laws. The concept of survivability is employed to evaluate the system's response to voltage perturbations in dependence on the network topology. Following a fixed point analysis of the power grid model, we extract three main indicators of stability through numerical studies: the share of producers in the network, the node degree and the magnitude of the perturbation. Based on our findings, we investigate the local dynamics of the perturbed system and derive explicit guidelines for the design of resilient DC power grids. Depending on the imposed voltage and current limits, the stability is optimized for low node degrees or a specific share of producers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.