In bone disorders infections are common. The concentration of majority of antibiotics is very low in the bone tissue. A high local dose can be obtained from the ciprofloxacin-loaded hydroxyapatite nanoparticles. The present study is aimed at developing the use of hydroxyapatite and zinc-doped hydroxyapatite nanoparticles as a carrier for ciprofloxacin drug delivery system. The ciprofloxacin-loaded hydroxyapatite and zinc-doped hydroxyapatite have a good antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Hydroxyapatite and zinc-doped hydroxyapatite were prepared and characterized using X-ray diffraction, Transmission electron microscopy and inductively coupled plasma optical emission spectrometry. They were loaded with ciprofloxacin using optimized drug loading parameters. Drug loading, in vitro drug release and antimicrobial activity were analyzed. The influence of zinc on the controlled release of ciprofloxacin was analyzed. The results show that the presence of zinc increases the drug release percentage and that the drug was released in a controlled manner.
Zinc oxide thin films have been prepared on different substrates by the sol-gel method using 2-methoxyethanol solution of zinc acetate dihydrate stabilized by monoethanolamine. The photoluminescence spectra of the films show the band-edge and sub-band transitions. The intensity of the band edge emission peak increases, while the intensity of the deep level emission peak decreases in the films coated on sapphire substrate. Transmittance spectra show that the films are transparent beyond 400 nm. The structural property of the films has been evaluated using X-ray diffraction. The X-ray peak intensity of the film (002) grown on sapphire substrate is higher than the films grown on glass and quartz substrates. The AFM images show improvement in the surface of the annealed films as compared to the as-grown ZnO films coated on sapphire substrates.
ZnO nanostructures have attracted great attention for possible applications in optoelectronic and spintronic devices. The electrical resistivity because of carriers can be improved by the introduction of Li ions, as Li is a possible dopant for achieving p-type ZnO. We have carried out a comprehensive micro-Raman scattering study of the phonons in 1% Li-and undoped ZnO needle crystals grown and annealed at 1073 K for 1 and 2 h under oxygen environment. Phonon mode of doped and undoped ZnO does not show any measurable shift for the doping concentration of 1%. As line width is related to point defect density, we find for both Li-and undoped ZnO crystals the crystallinity is improving towards the tip of the needle crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.