We completed a multicenter study of the effects of pomegranate cold-pressed (Oil) or supercritical CO(2)-extracted (S) seed oil, fermented juice polyphenols (W), and pericarp polyphenols (P) on human prostate cancer cell xenograft growth in vivo, and/or proliferation, cell cycle distribution, apoptosis, gene expression, and invasion across Matrigel, in vitro. Oil, W, and P each acutely inhibited in vitro proliferation of LNCaP, PC-3, and DU 145 human cancer cell lines. The dose of P required to inhibit cell proliferation of the prostate cancer cell line LNCaP by 50% (ED(50)) was 70 microg/mL, whereas normal prostate epithelial cells (hPrEC) were significantly less affected (ED(50) = 250 g/mL). These effects were mediated by changes in both cell cycle distribution and induction of apoptosis. For example, the androgen-independent cell line DU 145 showed a significant increase from 11% to 22% in G(2)/M cells (P <.05) by treatment with Oil (35 microg/mL) with a modest induction of apoptosis. In other cell lines/treatments, the apoptotic response predominated, for example, in PC-3 cells treated with P, at least partially through a caspase 3-mediated pathway. These cellular effects coincided with rapid changes in mRNA levels of gene targets. Thus, 4-hour treatment of DU 145 cells with Oil (35 microg/mL) resulted in significant 2.3 +/- 0.001-fold (mean +/- SEM) up-regulation of the cyclin-dependent kinase inhibitor p21((waf1/cip1)) (P <.01) and 0.6 +/- 0.14-fold down-regulation of c-myc (P <.05). In parallel, all agents potently suppressed PC-3 invasion through Matrigel, and furthermore P and S demonstrated potent inhibition of PC-3 xenograft growth in athymic mice. Overall, this study demonstrates significant antitumor activity of pomegranate-derived materials against human prostate cancer.
Previous studies have demonstrated the anticarcinogenic activity of pomegranate extracts and genistein in a series of human cancer cells. In the present study, the potential anticancer effects of pomegranate extracts and genistein on inhibition of cell proliferation and induction of apoptosis in human breast cancer cells was investigated. Human breast cancer cells (MCF-7) were cultured as monolayers in complete RPMI 1640 medium. The cells were cultured for 48 hours to allow growth and achieve about 80% confluence in 48-well culture plates, and then exposed to the agents for 24 hours in single and combination treatments. Post-treatment growth rate and apoptosis induction were assessed by the use of a series of bioassays-lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (inner salt) for viability and cytotoxicity; acridine orange-ethidium bromide and terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling assays for induction of apoptosis. Both pomegranate extracts and genistein had significant (dose- and time-dependent) cytotoxic and growth inhibition effects on MCF-7 cancer cells. Both growth inhibition and cytotoxicity were significantly higher (P < .01) in the combination treatments than in the single treatments with either agent. The data revealed that both drugs in single and in combination treatments induced apoptosis in MCF-7 cells. Apoptotic induction in the combination treatments was significantly higher (P < .01) than in single treatments. Both pomegranate extracts and genistein inhibit the growth of MCF-7 breast cancer cells through induction of apoptosis, with combination treatment being more efficacious than single treatments.
Prostate cancer is one of the leading causes of death in men aged 40 to 55. Genistein isoflavone (4′, 5′, 7‐trihydroxyisoflavone) is a dietary phytochemical with demonstrated anti‐tumour activities in a variety of cancers. Topotecan Hydrochloride (Hycamtin) is an FDA‐approved chemotherapy drug, primarily used for secondary treatment of ovarian, cervical and small cell lung cancers. This study was to demonstrate the potential anticancer efficacy of genistein‐topotecan combination in LNCaP prostate cancer cells and the mechanism of the combination treatment. The LNCaP cells were grown in complete RPMI medium, and cultured at 37°C, 5% CO2 for 24–48 hrs to achieve 70–90% confluency. The cells were treated with varying concentrations of genistein, topotecan and genistein‐topotecan combination and incubated for 24 hrs. The treated cells were assayed for (i) post‐treatment sensitivity using MTT assay and DNA fragmentation, (ii) treatment‐induced apoptosis using caspase‐3 and ‐9 binding assays and (iii) treatment‐induced ROS generation levels. The overall data indicated that (i) both genistein and topotecan induce cellular death in LNCaP cells, (ii) genistein‐topotecan combination was significantly more efficacious in reducing LNCaP cell viability compared with either genistein or topotecan alone, (iii) in all cases, cell death was primarily through apoptosis, via the activation of caspase‐3 and ‐9, which are involved in the intrinsic pathway, (iv) ROS generation levels increased significantly with the genistein‐topotecan combination treatment. Treatments involving genistein‐topotecan combination may prove to be an attractive alternative phytotherapy or adjuvant therapy for prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.