A series of controlled laboratory experiments are carried out in dual Teflon chambers to examine the presence of oligomers in secondary organic aerosols (SOA) from hydrocarbon ozonolysis as well as to explore the effect of particle phase acidity on SOA formation. In all seven hydrocarbon systems studied (i.e., alpha-pinene, cyclohexene, 1-methyl cyclopentene, cycloheptene, 1-methyl cyclohexene, cyclooctene, and terpinolene), oligomers with MW from 250 to 1600 are present in the SOA formed, both in the absence and presence of seed particles and regardless of the seed particle acidity. These oligomers are comparable to, and in some cases, exceed the low molecular weight species (MW < 250) in ion intensities in the ion trap mass spectra, suggesting they may comprise a substantial fraction of the total aerosol mass. It is possible that oligomers are widely present in atmospheric organic aerosols, formed through acid- or base-catalyzed heterogeneous reactions. In addition, as the seed particle acidity increases, larger oligomers are formed more abundantly in the SOA; consequently, the overall SOA yield also increases. This explicit effect of particle phase acidity on the composition and yield of SOA may have important climatic consequences and need to be considered in relevant models.
We present measurements of the distributions of droplet size and charge along with, for selected droplets, the variation of droplet size and charge with time for electrosprays of methanol, acetonitrile, and water, as well as for methanol at different polarities and electrolyte concentrations. These measurements are performed using a new technique for measuring droplet size and charge that uses phase Doppler interferometry for obtaining droplet size and inferring droplet charge from comparison of measured and calculated droplet mobility in a constant electric field. For selected droplets, multiple measurements of the size and charge are performed by repeated reversal of the drift field. This "ping-pong" experiment tracks droplet size and charge for loss of up to 99.9% of the initial droplet volume. We observe that droplet instability, referred to as a discharge event, mainly occurs near or above the Rayleigh limit of charge, resulting in a charge loss of 15-20% for methanol and acetonitrile and 20-40% in the case of water. Each discharge event is accompanied by a small mass loss, and droplet size evolution is dominated by evaporation. Discharge dynamics for negatively charged droplets are similar to those observed for positively charged droplets. The addition of up to 10 -4 M of NaCl to the solution does not significantly alter discharge dynamics. Measured size-charge correlations for droplets from electrosprays of methanol at low electrolyte concentrations (<10 -5 M), and to a lesser degree acetonitrile with similar electrolyte levels, fall into discrete groupings of size and charge that can be attributed to an initially monodisperse distribution of size and charge, followed by discharge events in which a nearly constant fractional charge loss occurs as a result of the Rayleigh instability. † Part of the special issue "Jack Beauchamp Festschrift".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.