Single-crystalline Bi nanowire arrays have been assembled into the nanochannels of anodic alumina membranes by electrodeposition. X-ray diffraction and transmission electron microscopy investigations revealed that the nanowires with diameter of either 50 nm or 20 nm are essentially single crystalline and highly oriented. The magnetotransport properties of the Bi nanowire arrays were measured, and positive magnetoresistance as high as 45% at 100 K was observed.} \fnm{3}{Author to whom correspondence should be addressed.
Chilled Tan mutton is currently the mainstream of Tan mutton production and consumption in China, but the reports on chilled meat quality evaluation and shelf-life discrimination by volatiles are limited. This study aimed to investigate the changes of volatile compounds in chilled Tan mutton at four storage stages (1d, 3d, 5d, 7d) in order to differentiate the various storage stages. An analysis protocol was established for the characterization and discrimination of the volatiles in chilled Tan mutton based on high capacity sorptive extraction-thermal desorption-gas coupled with chromatography-mass spectrometry (HiSorb-TD-GC-MS), electronic nose (E-nose), and multivariate statistical analysis. A total of 96 volatile compounds were identified by HiSorb-TD-GC-MS, in which six compounds with relative odor activity value >1 were screened as the key characteristic volatiles in chilled Tan mutton. Four storage stages were discriminated by partial least squares discriminant analysis, and nine differential volatile compounds showed a variable importance for the projection score >1, including octanoic acid, methyl ester, decanoic acid, methyl ester, acetic acid, heptanoic acid, methyl ester, propanoic acid, 2-hydroxy-, methyl ester, (ñ)-, hexanoic acid, propanoic acid, butanoic acid, and nonanoic acid. With the volcano plot analysis, hexadecanoic acid, methyl ester, was the common volatile marker candidate to discriminate chilled stages of Tan mutton. Meanwhile, E-nose could discriminate chilled Tan mutton at different storage stages rapidly and efficiently using linear discriminant analysis. Furthermore, E-nose sensors could obtain comprehensive volatile profile information, especially in esters, acids, and alcohols, which could confirm the potential of E-nose for meat odor recognition. Thus, this analysis protocol could characterize and discriminate the volatiles in chilled Tan mutton during storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.