We have calculated the electronic structures of five different manganese-oxo dimer complexes using density functional methods combined with the broken symmetry and spin projection concepts. The number of carboxylate, oxo, and peroxo bridging ligands was varied, and the terminal ligands were triazacyclononane (TACN). The formal Mn oxidation states varied from Mn(III)(2) and Mn(III)Mn(IV) to Mn(IV)(2). These complexes have been synthesized and their X-ray structures and magnetic properties measured previously. We have calculated the Heisenberg spin coupling parameters J and resonance delocalization parameters B for all of these systems. Despite the very small energy differences involved, there is a good correspondence between calculated and experimental Heisenberg J parameters. We have analyzed potential changes in the calculated effective Heisenberg coupling J(eff) for the mixed-valence Mn(III)Mn(IV) complexes when partial or complete delocalization due to the B parameter is taken into account. These changes depend also on the energy of the relevant intervalence band. Surprisingly, in the two mixed-valence systems studied, the high spin S = (5)/(2) state lies below S = (7)/(2). This is consistent with spin coupling between Mn with site spins S(1) = 1, S(2) = (3)/(2), corresponding to intermediate spin Mn(I) and Mn(II) respectively, instead of the coupling expected from the formal oxidation states, S(1) = 2, S(2) = (3)/(2) from high spin Mn(III) and Mn(IV). The spin and charge distributions in the broken symmetry ground states are also consistent with intermediate spin S(1) = 1, S(2) = (3)/(2). The calculated charge distributions show strong metal-ligand covalency. In fact, as the formal oxidation states of the Mn sites increase, the net Mn charges generally show a slow decrease, consistent with a very strong ligand --> metal charge transfer, particularly from &mgr;-oxo or &mgr;-peroxo ligands. TACN is a better donor ligand than carboxylate, even when calculated on a per donor atom basis. The ligand atom charge transfer order is peroxo >/= oxo >> TACN > acetate. The TACN > acetate ordering is expected from the spectrochemical series, but the strong charge transfer and strong metal-ligand covalency of peroxo and oxo ligands with the Mn sites cannot be simply related to their positions in the spectrochemical series. In the Mn(IV)(2)(&mgr;-O)(2)(&mgr;-O(2))(TACN)(2), each peroxo oxygen has a small charge (-0.3), much less than found for each &mgr;-O atom (-0.7). The high-spin S = 3 state lies quite low in energy, 8 kcal/mol from our calculations and about 4 kcal/mol based on the experimental Heisenberg spin coupling parameters. Potential molecular oxygen dissociation pathways involving a spin S = 1 state are discussed. Effective ligand field diagrams are constructed from the calculated energy levels which display the competition between spin polarization splitting and the ligand field t(2g)-e(g) splitting and allow comparisons of electronic structure among different complexes. The electronic structure and spin couplin...
A new lanthanide-organic framework incorporating both substituted isonicotinic acid and oxalate coligand has been fabricated successfully through solvo thermal reaction, namely, {[Er(µ 2 H 2 Minca)](µ 2 C 2 O 4 · 2H 2 O] · 2H 2 O} n (I) (H 3 Minca = 2 (hydroxyl) 6 methyl isonicotinic acid, H 2 C 2 O 4 = oxalate acid). Complex I exhibits two dimensional (2D) corrugated networks with a 6 3 topology, in which {LnO 8 } polyhedron units are alternately linked through carboxylate and oxalate oxygen atoms into the 2D sheet layer (CIF file CCDC no. 948026). Thermogravimetric and different thermal analysis measurements indi cate that I displays high thermal stability. Complex I also shows characteristic f-f transition luminescence emission in NIR region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.