The structure and topology of AdoMetDC display internal symmetry, suggesting that this protein may be the product of an ancient gene duplication. The positions of conserved, functionally important residues suggest the location of the active site and a possible binding site for the effector molecule putrescine.
Sorbitol dehydrogenase (hSDH) and aldose reductase form the polyol pathway that interconverts glucose and fructose. Redox changes from overproduction of the coenzyme NADH by SDH may play a role in diabetes-induced dysfunction in sensitive tissues, making SDH a therapeutic target for diabetic complications. We have purified and determined the crystal structures of human SDH alone, SDH with NAD(+), and SDH with NADH and an inhibitor that is competitive with fructose. hSDH is a tetramer of identical, catalytically active subunits. In the apo and NAD(+) complex, the catalytic zinc is coordinated by His69, Cys44, Glu70, and a water molecule. The inhibitor coordinates the zinc through an oxygen and a nitrogen atom with the concomitant dissociation of Glu70. The inhibitor forms hydrophobic interactions to NADH and likely sterically occludes substrate binding. The structure of the inhibitor complex provides a framework for developing more potent inhibitors of hSDH.
We have identified the binding site of a new class of allosteric HLGP inhibitors. The crystal structure revealed the details of inhibitor binding, led to the design of a new class of compounds, and should accelerate efforts to develop therapeutically relevant molecules for the treatment of diabetes.
S-Adenosylmethionine decarboxylase has been implicated in cell growth and differentiation and is synthesized as a proenzyme, which undergoes autocatalytic cleavage to generate an active site pyruvoyl group. In mammals, S-adenosylmethionine decarboxylase is active as a dimer in which each protomer contains one alpha subunit and one beta subunit. In many higher organisms, autocatalysis and decarboxylation are stimulated by putrescine, which binds in a buried site containing numerous negatively charged residues. In contrast, plant S-adenosylmethionine decarboxylases are fully active in the absence of putrescine, with rapid autocatalysis that is not stimulated by putrescine. We have determined the structure of the S-adenosylmethionine decarboxylase from potato, Solanum tuberosum, to 2.3 A resolution. Unlike the previously determined human enzyme structure, the potato enzyme is a monomer in the crystal structure. Ultracentrifugation studies show that the potato enzyme is also a monomer under physiological conditions, with a weak self-association constant of 6.5 x 10(4) M(-)(1) for the monomer-dimer association. Although the potato enzyme contains most of the buried charged residues that make up the putrescine binding site in the human enzyme, there is no evidence for a putrescine binding site in the potato enzyme. Instead, several amino acid substitutions, including Leu13/Arg18, Phe111/Arg114, Asp174/Val181, and Phe285/His294 (human/potato), provide side chains that mimic the role of putrescine in the human enzyme. In the potato enzyme, the positively charged residues form an extensive network of hydrogen bonds bridging a cluster of highly conserved negatively charged residues and the active site, including interactions with the catalytic residues Glu16 and His249. The results explain the constitutively high activity of plant S-adenosylmethionine decarboxylases in the absence of putrescine and are consistent with previously proposed models for how putrescine together with the buried, negatively charged site regulates enzyme activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.