The conversion of bedrock to regolith marks the inception of critical zone processes, but the factors that regulate it remain poorly understood. Although the thickness and degree of weathering of regolith are widely thought to be important regulators of the development of regolith and its water-storage potential, the functional relationships between regolith properties and the processes that generate it remain poorly documented. This is due in part to the fact that regolith is difficult to characterize by direct observations over the broad scales needed for process-based understanding of the critical zone. Here we use seismic refraction and resistivity imaging techniques to estimate variations in regolith thickness and porosity across a forested slope and swampy meadow in the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities image a weathering zone ranging in thickness from 10 to 35 m (average = 23 m) along one intensively studied transect. The inferred weathering zone consists of roughly equal thicknesses of saprolite (P-velocity < 2 km s À1 ) and moderately weathered bedrock (P-velocity = 2-4 km s À1 ). A minimum-porosity model assuming dry pore space shows porosities as high as 50% near the surface, decreasing to near zero at the base of weathered rock. Physical properties of saprolite samples from hand augering and push cores are consistent with our rock physics model when variations in pore saturation are taken into account. Our results indicate that saprolite is a crucial reservoir of water, potentially storing an average of 3 m 3 m À2 of water along a forested slope in the headwaters of the SSCZO. When coupled with published erosion rates from cosmogenic nuclides, our geophysical estimates of weathering zone thickness imply regolith residence times on the order of 10 5 years. Thus, soils at the surface today may integrate weathering over glacial-interglacial fluctuations in climate.
Observing the critical zone (CZ) below the top few meters of readily excavated soil is challenging yet crucial to understanding Earth surface processes. Near‐surface geophysical methods can overcome this challenge by imaging the CZ in three dimensions (3‐D) over hundreds of meters, thus revealing lateral heterogeneity in subsurface properties across scales relevant to understanding hillslope erosion, weathering, and biogeochemical cycling. We imaged the CZ under a soil‐mantled ridge developed in granitic terrain of the Laramie Range, Wyoming, using data from five boreholes and a 3‐D volume (970 by 600 by 80 m) of seismic velocities generated by ordinary kriging of 25 two‐dimensional seismic refraction transects. The observed CZ structure under the ridge broadly matches predictions of two recently proposed hypotheses: the uppermost surface of weathered bedrock is consistent with subsurface weathering driven by bedrock drainage and subsurface topography defining the top of unweathered protolith is consistent with fracturing predicted from topographic and regional stresses. In contrast, differences in slope aspect along the ridge are too subtle to explain observed variations in regolith structure. Our observations suggest that multiple processes, each of which may dominate at different depths, work in concert to regulate deep CZ structure.
In high-mountain watersheds, the critical zone holds crucial life-sustaining water stores in the form of shallow groundwater aquifers. To better understand the role that the critical zone plays in moderating hydrologic response to fluxes at the surface and in the subsurface, the hydrologic properties must be characterized over large scales (i.e., that of the watershed). In this study, we estimate porosity from geophysical measurements across a 58-ha area to depths of~80 m. Our observations include velocities from seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples acquired by push coring. We use a petrophysical approach by combining two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, into a Bayesian inversion. The inverted geophysical porosities show a positive correlation with measured values (R 2 = 0.93). We extrapolate the porosity estimates from 30 individual seismic refraction lines to a 3D volume below our study area using ordinary kriging to quantify the water holding capacity of our study area. Our results reveal that the critical zone in our study area holds 2.9 × 10 6 ± 9.6 × 10 5 m 3 of water, where 34% of this storage is in the saprolite, 55% is in the fractured rock, and the remaining 11% is in the bedrock.
Thin oceanic crust is formed by decompression melting of the upper mantle at mid-ocean ridges, but the origin of the thick and buoyant continental crust is enigmatic. Juvenile continental crust may form from magmas erupted above intraoceanic subduction zones, where oceanic lithosphere subducts beneath other oceanic lithosphere. However, it is unclear why the subduction of dominantly basaltic oceanic crust would result in the formation of andesitic continental crust at the surface. Here we use geochemical and geophysical data to reconstruct the evolution of the Central American land bridge, which formed above an intra-oceanic subduction system over the past 70 Myr. We find that the geochemical signature of erupted lavas evolved from basaltic to andesitic about 10 Myr ago-coincident with the onset of subduction of more oceanic crust that originally formed above the Galápagos mantle plume. We also find that seismic P-waves travel through the crust at velocities intermediate between those typically observed for oceanic and continental crust. We develop a continentality index to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust globally. We conclude that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone-a process probably more common in the Archaean-can produce juvenile continental crust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.