We have measured the temperature dependence of the energy ͓E 0 (T)͔ and broadening parameter ͓⌫ 0 (T)͔ of the fundamental gap for GaSb and four samples of Ga 1Ϫx In x As y Sb 1Ϫy ͑lattice matched to GaSb͒ using infrared photoreflectance. The parameters that describe the temperature variation of the energy ͑including thermalexpansion effects͒ were evaluated using both the semiempirical Vashni relation as well as an equation that incorporates the Bose-Einstein occupation factor. The behavior of ⌫ 0 (T) was described by a Bose-Einsteintype equation.
Controlled doping of quaternary alloys of In x Ga 1−x As y Sb 1−y with tellurium is fundamental to obtain the n-type layers needed for the development of optoelectronic devices based on p-n heterojunctions. InGaAsSb epitaxial layers were grown by liquid phase epitaxy and Te doping was obtained by incorporating small Sb 3 Te 2 pellets in the growth melt. The tellurium doping levels were in the range 10 16 -10 17 cm −3 . We have used lowtemperature photoluminescence (PL) spectroscopy to study the influence of the Te donor levels on the radiative transitions shown in the PL spectra. The PL measurements were done by exciting the samples with the 448 nm line of an Ar ion laser with varying excitation powers in the range from 10 to 200 mW. For the low-doped sample the PL spectrum showed a narrow exciton-related peak centred at around 610 meV with a full width at half maximum (FWHM) of about 7 meV which is evidence of the good crystalline quality of the layers. For higher Te doping, the PL spectra show the presence of band-to-band and donor-to-acceptor transitions which overlap as the Te concentration increases. The peak of the PL band shifts to higher energies as Te doping increases due to a band-filling effect as the Fermi level enters into the conduction band. From the peak energy of the PL spectra, and using a model that includes the band-filling and band-shrinkage effects due to the carriers, we have estimated the effective carrier concentration due to doping with Te in the epilayers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.