This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.