Despite their huge potential, deep learning-based models are still not trustful enough to warrant their adoption in clinical practice. The research on the interpretability and explainability of deep learning is currently attracting huge attention. Multilayer Convolutional Sparse Coding (ML-CSC) data model, provides a model-based explanation of convolutional neural networks (CNNs). In this article, we extend the ML-CSC framework towards multimodal data for medical image segmentation, and propose a merged joint feature extraction ML-CSC model. This work generalizes and improves upon our previous model, by deriving a more elegant approach that merges feature extraction and convolutional sparse coding in a unified framework. A segmentation study on a multimodal magnetic resonance imaging (MRI) dataset confirms the effectiveness of the proposed approach. We also supply an interpretability study regarding the involved model parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.