The pulse forming line (PFL) is the key part of the intense electron-beam accelerators (IEBA), which determines the quality and characteristic of the output beam current of the IEBA. Compared with the accelerator with traditional Blumlein line, an IEBA based on strip spiral Blumlein line (SSBL) can increase the duration of the output pulse in the same geometrical dimension. But the disadvantage of the SSBL is that the output voltage waveform at the matched load may be distorted, which influences the electron beam quality. In this paper, according to the electromagnetic theory, formulas for calculating the main electric parameters of SSBL (inductance, capacitance, transmission time, and characteristic impedance) are deduced. The effect of the geometric parameters of SSBL on the slowing coefficient is analyzed. The designed condition of SSBL for the output ideal voltage pulse in the matched load is obtained by theoretical analysis. Furthermore, the Karat code is used to simulate the output voltage waveform of SSBL on the matched load for different spiral angels. At last, a couple of contrastive experiments are performed on an electron-beam accelerator based on the SSBL with water dielectric. The experimental results agree with the theoretical and simulated results.
In this paper, the characteristic impedance matching of the inner line and outer line of the multi-filar tape-helix Blumlein pulse forming line (BPFL) is analyzed in detail by dispersion theory of tape helix. Analysis of the spatial harmonics of multi-filar tape-helix BPFL shows that the integer harmonic numbers of the excited spatial harmonics are not continuous. In addition, the basic harmonic component still dominates the dispersion characteristics of the multi-filar tape-helix BPFL at low frequency band. The impedance mismatching phenomenon caused by the discontinuity of filling dielectrics in the inner line of BPFL is studied as an important issue. Effects of dielectric discontinuity on the coupled electromagnetic fields and the parameters of the outer line are also analyzed. The impedance matching conditions are both obtained under the situations of continuous filling dielectric and discontinuous dielectrics, respectively. Impedance characteristics of these two situations are analyzed by comparison, and effects of the thickness of support dielectric on the impedance are also presented. When the 6 mm-thickness nylon support of the multi-filar tape helix is used in the filling dielectric of de-ionized water, the characteristic impedances of the inner line and outer line of BPFL are 53 Ω and 14.7 Ω, respectively. After the improvement about substituting de-ionized water by castor oil, the relative permittivities of the support dielectric and filling dielectric are almost the same, and the impedances of the inner and outer line of BPFL become 80 Ω and 79 Ω, respectively. That is to say, the impedance mismatching problem caused by dielectric discontinuity is solved. Circuit simulation and experimental results basically correspond to the theoretical results, and the fact demonstrates that impedance analysis of the multi-filar tape-helix BPFL based on dispersion theory is correct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.