In recent years, the energy sector has undergone an important transformation as a result of technological progress and socioeconomic development. The continuous integration of renewable energy sources forces a gradual transition from the traditional business model based on a reduced number of large power plants to a more decentralized energy production. The decentralization and the increased number of energy sources lead to a series of new challenges in the energy sector. This paper presents an approach to determine the optimal energy supply mix for small and medium sized buildings or installations. The optimization algorithm considers the electricity and heat demand and determines the optimal combination of energy sources by minimizing an economic index. The optimization problem can be solved for multiple demand profiles and takes into account the possibility to integrate accumulator systems. The proposed approach provides a high degree of flexibility and can be used to study the influence of the energy prices on the optimal energy supply mix. The performance of the proposed optimization approach is illustrated by the results obtained from a simulation example.
This paper presents the results of a detailed, bottom-up analysis of Mexico's energy markets. A team of U.S, and Mexican analysts used the Energy and Power Evaluation Program (ENPEP) to develop energy market forecasts to the year 2025, Primary energy supply is projected to grow from 9,313 petajoules (Pl) in 1999 to 13,130 Pl by 2025, Mexico's crude oil production is expected to increase by 1% annually to 8,230 Pl in 2025. As its domestic crude refining capacity becomes unable to meet the rising demand for petroleum products, resulting from such factors as the country's rapidly growing transportation needs, imports of oil products will become increasingly important. Gasoline imports, for example, are expected to increase 12-fold, The Mexican natural gas markets are driven by the strong demand for gas in the power generating and manufacturing This work was supported by the U.S. Department of State and the International Atomic Energy Agency under interagency agreement, through U.S. Department of Energy contract W-31-109-Eng-38. The views and opinions expressed in this paper are those of the authors and may not necessarily reflect those of the institutions they represent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.