Phase transformations in binary ultra-fine-grained (UFG) pseudoelastic NiTi wires were studied in a wide temperature range using mechanical loading/unloading experiments, resistance measurements, differential scanning calorimetry (DSC), thermal infrared imaging, and transmission electron microscopy (TEM). The formation of R-phase can be detected in the mechanical experiments. It is shown that the stress-strain response of the R-phase can be isolated from the overall stress-strain data. The R-phase always forms prior to B19¢ when good pseudoelastic properties are observed. The stress-induced B2 to R-phase transition occurs in a homogeneous manner, contrary to the localized character of the B2/R to B19¢ transformations. The temperature dependence of the critical stress values for the formation of the martensitic phases shows a Clausius Clapeyron type of behavior with constants close to 6 MPa/K (B19¢) and 18 MPa/K (R-phase). A stress-temperature map is suggested that summarizes the experimentally observed sequences of elementary transformation/deformation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.