Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) constitute an important, yet relatively poorly understood, family of heme-containing enzymes. Here, we report extensive structural and biochemical studies of the Xanthomonas campestris TDO and a related protein SO4414 from Shewanella oneidensis, including the structure at 1.6-Å resolution of the catalytically active, ferrous form of TDO in a binary complex with the substrate L-Trp. The carboxylate and ammonium moieties of tryptophan are recognized by electrostatic and hydrogen-bonding interactions with the enzyme and a propionate group of the heme, thus defining the L-stereospecificity. A second, possibly allosteric, L-Trp-binding site is present at the tetramer interface. The sixth coordination site of the heme-iron is vacant, providing a dioxygenbinding site that would also involve interactions with the ammonium moiety of L-Trp and the amide nitrogen of a glycine residue. The indole ring is positioned correctly for oxygenation at the C2 and C3 atoms. The active site is fully formed only in the binary complex, and biochemical experiments confirm this induced-fit behavior of the enzyme. The active site is completely devoid of water during catalysis, which is supported by our electrochemical studies showing significant stabilization of the enzyme upon substrate binding.cancer ͉ heme enzymes ͉ immunomodulation ͉ indoleamine 2,3-dioxygenase T ryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) catalyze the oxidative cleavage of the L-tryptophan (L-Trp) pyrrole ring, the first and rate-limiting step in L-Trp catabolism through the kynurenine pathway (1-3). In addition, IDO has been implicated in a diverse range of physiological and pathological conditions, including suppression of T cell proliferation, maternal tolerance to allogenic fetus, and immune escape of cancers (4-8), and is an attractive target for drug discovery against cancer and autoimmune and other diseases (2, 9-12).Despite catalyzing identical biochemical reactions (Fig. 1a), the sequence similarity between TDO and IDO is extremely low. An alignment of their sequences is only possible based on their structures, which suggests a sequence identity of 10% between them (Fig. 1b). In comparison, Xanthomonas campestris TDO shares 34% sequence identity with human TDO (Fig. 1b), demonstrating the remarkable evolutionary conservation of this enzyme. TDO is a homotetrameric enzyme and is highly specific for L-Trp and related derivatives such as 6-fluoro-Trp as the substrate. In comparison, IDO is monomeric, and shows activity toward a larger collection of substrates, including L-Trp, Dtryptophan (D-Trp), serotonin, and tryptamine (3), although the K m for D-Trp is Ϸ100-fold higher than that for L-Trp (13). The structure of human IDO in the catalytically inactive, ferric [Fe(III)]-heme state in complex with the 4-phenylimidazole inhibitor has recently been reported (14). Although this structure gave information about important active site residues, the inhibitor is coordinat...
The principles of natural protein engineering are obscured by overlapping functions and complexity accumulated through natural selection and evolution. Completely artificial proteins offer a clean slate on which to define and test these protein engineering principles, while recreating and extending natural functions. We introduce this method here with the first design of an oxygen transport protein, akin to human neuroglobin. Beginning with a simple and unnatural helix-forming sequence with just three different amino acids, we assemble a four helix bundle, position histidines to bis-his ligate hemes, and exploit helical rotation and glutamate burial on heme binding to introduce distal histidine strain and facilitate O2 binding. For stable oxygen binding without heme oxidation, water is excluded by simple packing of the protein interior and loops that reduce helical-interface mobility. O2 affinities and exchange timescales match natural globins with distal histidines with the remarkable exception that O2 binds tighter than CO.
Emulating functions of natural enzymes in man-made constructs has proven challenging. Here we describe a man-made protein platform that reproduces many of the diverse functions of natural oxidoreductases without importing the complex and obscure interactions common to natural proteins. Our design is founded on an elementary, structurally stable 4-α-helix protein monomer with a minimalist interior malleable enough to accommodate various light- and redox-active cofactors and with an exterior tolerating extensive charge patterning for modulation of redox cofactor potentials and environmental interactions. Despite its modest size, the construct offers several independent domains for functional engineering that targets diverse natural activities, including dioxygen binding and superoxide and peroxide generation, interprotein electron transfer to natural cytochrome c and light-activated intraprotein energy transfer and charge separation approximating the core reactions of photosynthesis, cryptochrome and photolyase. The highly stable, readily expressible and biocompatible characteristics of these open-ended designs promise development of practical in vitro and in vivo applications.
Summary Here we extend the engineering descriptions of simple, single-electron-tunneling chains common in oxidoreductases to quantify sequential oxidation-reduction rates of two-or-more electron cofactors and substrates. We identify when nicotinamides may be vulnerable to radical mediated oxidation-reduction and merge electron-tunneling expressions with the chemical rate expressions of Eyring. The work provides guidelines for the construction of new artificial oxidoreductases inspired by Nature but adopting independent design and redox engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.