The sea ice simulation of the Community Climate System Model version 3 (CCSM3) T42-gx1 and T85-gx1 control simulations is presented and the influence of the parameterized sea ice thickness distribution (ITD) on polar climate conditions is examined. This includes an analysis of the change in mean climate conditions and simulated sea ice feedbacks when an ITD is included. It is found that including a representation of the subgrid-scale ITD results in larger ice growth rates and thicker sea ice. These larger growth rates represent a higher heat loss from the ocean ice column to the atmosphere, resulting in warmer surface conditions. Ocean circulation, most notably in the Southern Hemisphere, is also modified by the ITD because of the influence of enhanced high-latitude ice formation on the ocean buoyancy flux and resulting deep water formation. Changes in atmospheric circulation also result, again most notably in the Southern Hemisphere.There are indications that the ITD also modifies simulated sea ice-related feedbacks. In regions of similar ice thickness, the surface albedo changes at 2XCO 2 conditions are larger when an ITD is included, suggesting an enhanced surface albedo feedback. The presence of an ITD also modifies the ice thickness-ice strength relationship and the ice thickness-ice growth rate relationship, both of which represent negative feedbacks on ice thickness. The net influence of the ITD on polar climate sensitivity and variability results from the interaction of these and other complex feedback processes.
Abstract. Climate models use a wide variety. ofparameterizations for surface albedos of the ice-covered ocean. These range from simple broadband albedo parameterizations that distinguish among snow-covered and bare ice to more sophisticated parameterizations that include dependence on ice and snow depth, solar zenith angle, and spectral resolution. Several sophisticated parameterizations have also been developed for thermodynamic sea ice models that additionally include dependence on ice and snow age, and melt pond characteristics. Observations obtained in the Arctic Ocean during 1997-1998 in conjunction with the Surface Heat Budget of the Arctic Ocean (SHEBA) and FIRE Arctic Clouds Experiment provide a unique data set against which to evaluate parameterizations of sea ice surface albedo. We apply eight different surface albedo parameterizations to the SHEBA/FIRE data set and evaluate the parameterized albedos against the observed albedos. Results show that these parameterizations yield very different representations of the annual cycle of sea ice albedo. The importance of details and functional relationships of the albedo parameterizations is assessed by incorporating into a single-column sea ice model two different albedo parameterizations, one complex and one simple, that have the same annually averaged surface albedo. The baseline sea ice characteristics and strength of the ice-albedo feedback are compared for the simulations of the different surface albedos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.