The increasing requirements of CERN experiments make essential the upgrade of beam instrumentation in general, and high accuracy beam profile monitors in particular. The CERN Beam Instrumentation Group has been working during the last years on the Wire Scanners upgrade. These systems cross a thin wire through a circulating beam, the resulting secondary particles produced from beam/wire interaction are detected to reconstruct the beam profile. For the new secondary shower acquisition system, it is necessary to perform very low noise measurements with high dynamic range coverage. The aim is to design a system without tuneable parameters and compatible for any beam wire scanner location at the CERN complex. Polycrystalline chemical vapour deposition diamond detectors (pCVD) are proposed as new detectors for this application because of their radiation hardness, fast response and linearity over a high dynamic range. For the detector readout, the acquisition electronics must be designed to exploit the detector capabilities and perform bunch by bunch measurements at 40MHz. This paper describes the design challenges of such a system, analysing different acquisition possibilities from the signal integrity point of view. The proposed system architecture is shown in detail and the development status presented.
Resumen: El presente artículo describe una interfaz cerebro-computador (BCI: Brain-Computer Interface) que permite gobernar un brazo robótico. El sistema emplea señales electroencefalográficas (EEG) captadas por 16 electrodos para controlar el robot mediante potenciales evocados visuales, concretamente a través del paradigma P300 y N2PC. De esta manera, usando estímulos visuales, el usuario es capaz de controlar el movimiento del robot, centrando su atención en las diferentes opciones que se le muestran en una pantalla. El sistema ha sido validado de forma satisfactoria por tres usuarios sanos, cada uno de los cuales realizó diversas tareas de agarre y colocación de objetos controlando un brazo robot de 6 grados de libertad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.