Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility, reducing intestinal viscosity, maintaining a beneficial gut microbiota, and promoting healthy intestinal integrity in poultry.
Previously, our laboratory has screened and identified Bacillus spp. isolates as direct-fed microbials (DFM). The purpose of the present study was to evaluate the cellulase and xylanase production of these isolates and select the most appropriate Bacillus spp. candidates for DFM. Furthermore, an in vitro digestive model, simulating different compartments of the gastrointestinal tract, was used to determine the effect of these selected candidates on digesta viscosity and Clostridium perfringens proliferation in different poultry diets. Production of cellulase and xylanase were based on their relative enzyme activity. Analysis of 16S rRNA sequence classified two strains as Bacillus amyloliquefaciens and one of the strains as Bacillus subtilis. The DFM was included at a concentration of 108 spores/g of feed in five different sterile soybean-based diets containing corn, wheat, rye, barley, or oat. After digestion time, supernatants from different diets were collected to measure viscosity, and C. perfringens proliferation. Additionally, from each in vitro simulated compartment, samples were taken to enumerate viable Bacillus spores using a plate count method after heat-treatment. Significant (P < 0.05) DFM-associated reductions in supernatant viscosity and C. perfringens proliferation were observed for all non-corn diets. These results suggest that antinutritional factors, such as non-starch polysaccharides from different cereals, can enhance viscosity and C. perfringens growth. Remarkably, dietary inclusion of the DFM that produce cellulase and xylanase reduced both viscosity and C. perfringens proliferation compared with control diets. Regardless of diet composition, 90% of the DFM spores germinated during the first 30 min in the crop compartment of the digestion model, followed by a noteworthy increased in the intestine compartment by ~2log10, suggesting a full-life cycle development. Further studies to evaluate in vivo necrotic enteritis effects are in progress.
We evaluated the ability of a commercially available lactic acid bacteria-based probiotic culture (LAB) to reduce Salmonella Enteritidis or Salmonella Typhimurium in day-of-hatch broiler chicks. In these experiments, chicks were challenged with Salmonella Enteritidis or Salmonella Typhimurium and treated with LAB 1-h postchallenge. Following treatment, cecal tonsils and ceca were aseptically collected for Salmonella Enteritidis or Salmonella Typhimurium enrichment or Salmonella Enteritidis enumeration, respectively. In experiments 1 to 3, LAB significantly reduced the incidence of Salmonella Enteritidis (60 to 70% reduction) or Salmonella Typhimurium (89 to 95% reduction) recovered from the cecal tonsils of day-old broiler chicks 24 h following treatment as compared with controls (P < 0.05). Additionally, administration of LAB caused a >2.9 log(10) reduction of total cecal Salmonella Enteritidis recovered 24 h following treatment as compared with controls (P < 0.05). In experiments 4 to 7, upon sample enrichment LAB significantly reduced the recovery of Salmonella Enteritidis from the cecal tonsils at 24 h, but not 6 or 12 h posttreatment (P < 0.05). However, in experiments 6 and 7, when total cecal Salmonella Enteritidis recovery was enumerated, a significant treatment-associated reduction was observed 12 h posttreatment, although in cecal tonsil samples there was no difference in Salmonella Enteritidis incidence at 12 h (P < 0.05). In these studies, LAB treatment significantly reduced recovery of Salmonella in day-of-hatch broilers.
1. The effects of the dietary inclusion of a Bacillus-based direct-fed microbial (DFM) candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation were evaluated in broilers consuming rye-based diets. 2. In the present study, control mash rye-based diets (CON) or Bacillus-DFM supplemented diets (TRT) were administered ad libitum to male broilers in three independent experiments. 3. In Experiments 1 and 2 (n = 25/group), liver samples were taken to evaluate bacterial translocation, digesta samples were used for viscosity measurements and the intestinal microbial flora was evaluated from different intestinal sections to enumerate total recovered gram-negative bacteria (TGB), lactic acid bacteria (LAB) and anaerobic bacteria (TAB). Additionally, both tibias were removed for assessment of bone quality. 4. In Experiment 3, each experimental group had 8 replicates of 20 chickens (n = 160/group). Weekly, body weight (BW), feed intake (FI) and feed conversion ratio (FCR) were evaluated. At d 28-of-age, samples were taken to determine bacterial translocation, digesta viscosity and bone quality characteristics. 5. In all experiments, consumption of Bacillus-DFM reduced bacterial translocation to the liver and digesta viscosity. Additionally, DFM supplementation improved BW, bone quality measurements and FCR. Moreover, chickens fed on the Bacillus-DFM diet in Experiments 1 and 2 showed a significant reduction in the number of gram-negative and anaerobic bacteria in the duodenal content compared to control. 6. In summary, chickens fed on a rye-based diet without DFM inclusion showed an increase in bacterial translocation and digesta viscosity, accompanied by reduced performance and bone quality variables relative to the Bacillus-DFM candidate group. Hence, incorporation into the feed of a selected DFM ameliorated the adverse anti-nutritional effects related to utilisation of rye-based diets in broilers chickens.
In the present study, a series of experiments were conducted to evaluate the ability of a combination of 3 ATCC lactobacilli (LAB3) or a commercially available probiotic culture (PROB) to reduce Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) in broiler chicks. Additionally, we varied the timing of PROB administration in relationship to Salmonella challenge and determined the influence on recovery of enteric Salmonella. In experiments 1 to 3, chicks were randomly assigned to treatment groups and were then challenged via oral gavage with Salmonella Enteritidis. Chicks were treated 1 h after Salmonella Enteritidis challenge with LAB3 or PROB. Twenty-four hours posttreatment, cecal tonsils were collected for recovery of enteric Salmonella. In experiments 4 to 7, day-of-hatch chicks were randomly assigned to treatment groups and were then treated with PROB via oral gavage and placed into pens. Chicks were challenged with Salmonella Enteritidis 24 h after treatment via oral gavage. At 24 h after Salmonella Enteritidis challenge, cecal tonsils were collected and recovery of enteric Salmonella was determined. In experiments 8 to 10, 1-d-old chicks were randomly assigned to treatment groups and were then challenged via oral gavage with Salmonella Enteritidis and placed into pens. Chicks were treated 24 h after challenge with PROB via oral gavage. Twenty-four hours post PROB treatment, cecal tonsils were collected and enriched as described above. It was found that PROB significantly reduced cecal Salmonella Enteritidis recovery 24 h after treatment as compared with controls or LAB3-treated chicks in experiments 1 to 3 (P<0.05). Administration of PROB 24 h before Salmonella Enteritidis challenge significantly reduced recovery of Salmonella Enteritidis in 2 out of 4 experiments and no reduction in cecal Salmonella Enteritidis was observed when chicks were challenged with Salmonella Enteritidis and treated 24 h later with PROB. These data demonstrate that PROB more effectively reduced Salmonella Enteritidis than LAB3, and the timing of PROB treatment affects Salmonella Enteritidis-associated reductions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.