We report a successful observation of pressure-induced superconductivity in a topological compound Bi 2 Te 3 with T c of ∼3 K between 3 to 6 GPa. The combined high-pressure structure investigations with synchrotron radiation indicated that the superconductivity occurred at the ambient phase without crystal structure phase transition. The Hall effects measurements indicated the holetype carrier in the pressure-induced superconducting Bi 2 Te 3 single crystal. Consequently, the first-principles calculations based on the structural data obtained by the Rietveld refinement of X-ray diffraction patterns at high pressure showed that the electronic structure under pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi 2 Te 3 due to the proximity effect between superconducting bulk states and Dirac-type surface states. We also discuss the possibility that the bulk state could be a topological superconductor.high-pressure effects | pressure-tuned conductivity | topological superconductors U tilizing high pressure can be a very powerful method to generate new materials states, as demonstrated by either highpressure synthesis of new compounds, or pressure-tuned unique electronic states, such as insulator metal transitions. High pressure is particularly effective in tuning superconductivity as it is well documented that the record high superconducting transition temperature T c for either elements (1) or compounds (2) is created with the application of pressure. Recently, topological insulators (TIs) have generated great interest in the area of condensed matter physics (3-8). These materials have an insulating gap in the bulk, while also possessing conducting gapless edges or surface states in the boundaries that are protected by the timereversal symmetry (8, 9). Similar to TIs, topological superconductors have a full pairing gap in the bulk and gapless Majorana states on the edge or surface (10-13, 18). Majorana Fermions (14), half of ordinary Dirac fermions, could be very useful in topological quantum computing (15-17), which is proscriptive for new concept information technology.
The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.