A novel high-throughput strategy was developed to determine the calcium precipitation activity (CPA) of mineralization bacteria used for self-healing of concrete cracks. A bacterial strain designated as H4 with the highest CPA of 94.8 % was screened and identified as a Bacillus species based on 16S rDNA sequence and phylogenetic tree analysis. Furthermore, the effects of certain influential factors on the microbial calcium precipitation process of H4 were evaluated. The results showed that lactate and nitrate are the best carbon and nitrogen sources, with optimal concentrations of approximately 25 and 18 mM, respectively. The H4 strain is able to maintain a high CPA in the pH range of 9.5-11.0, and a suitable initial spore concentration is 4.0 × 10(7) spores/ml. Moreover, an ambient Ca(2+) concentration greater than 60 mM resulted in a serious adverse impact not only on the CPA but also on the growth of H4, suggesting that the maintenance of the Ca(2+) concentration at a low level is necessary for microbial self-healing of concrete cracks.
ABSTRACT. Thermostable α-amylase is of great importance in the starch fermentation industry; it is extensively used in the manufacture of beverages, baby foods, medicines, and pharmaceuticals. Bacillus amyloliquefaciens produces thermostable α�am�lase� ho�e�er� produc� α�am�lase� ho�e�er� produc� -amylase; however, production of thermostable α-amylase is limited. Ion-beam implantation is an effective method for mutation breeding in microbes. We conducted ionbeam implantation experiments using two different ions, Ar + and N + , to determine the survival rate of and dose effect on a high α-amylase activity strain of B. amyloliquefaciens that had been isolated from soil samples. N + implantation resulted in a higher survival rate than Ar + implantation. The optimum implantation dose was 2.08 × 10 15 ions/ cm 2 . Under this implantation condition, we obtained a thermally and genetically stable mutant α-amylase strain (RL-1) with high enzyme activity for degrading α-amylase. Compared to the parental strain (RL), the RL-1 strain had a 57.1% increase in α-amylase activity. We conclude that ion implantation in B. amyloliquefaciens can produce strains with increased production of thermostable α-amylase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.