In perovskite solar cells (PSCs), the vertical inhomogeneities which include uneven grains, voids, and grain boundaries are closely linked to the underlying charge transport layer which controls the nucleation and grain growth in the perovskite film. Herein, the vertical inhomogeneity of perovskite films in the device structure is analyzed by depth-dependent photoluminescence (PL) achieved with different excitation wavelengths. An analytical representation between vertical inhomogeneity and depth-dependent PL, parametrized with a factor, b, is introduced to understand the relation between inhomogeneity and charge recombination. Lower values of b correlate to lower vertical inhomogeneity and hence reduced recombination. The analytical representation is validated in two sets of devices that show remarkable differences in perovskite film morphology, device based on mesoporous TiO2 and planar SnO2. By exploring the morphological properties and the PL emission from different depths across the device structures, we show that the lower vertical inhomogeneity leads to more efficient charge carrier extraction in planar SnO2-based devices. Moreover, the SnO2-based devices exhibit lower Urbach energy, which concurs with the slow transient photovoltage decay, suggesting less defects and recombination losses. This work provides a broader understanding of the impact of vertical inhomogeneity on the charge extraction efficiency and presents a methodology to study quantitatively the inhomogeneity of perovskite films in device structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.