Histologic studies have become increasingly important in recognizing morphologic differences in photoaged versus intrinsically aged skin. Earlier histologic studies have attempted to evaluate these changes by examining anatomical sites which are not comparable, such as face and buttocks. As part of a multicenter study, we have quantitatively examined a panel of 16 histologic features in baseline facial skin biopsies from 158 women with moderate to severe photodamage. When compared to the postauricular area (photo protected), biopsies of the crow's feet area (photo exposed) had a twofold increase in melanocytes and a statistically significant increase in melanocytic atypia (p < .0001) and epidermal melanin (p < .0001). Other epidermal changes included reduced epidermal thickness (p < .01), more compact stratum corneum (p < .0001) and increased granular layer thickness (p < .0001) in the crow's feet skin. There was increased solar elastosis (p < .0001), dermal elastic tissue (p < .0001), melanophages (p < .0001), perivascular inflammation (p < .05) and perifollicular fibrosis (p < .01) but no change in the number of mast cells or dermal mucin in the photo exposed skin. Our data document quantitative differences in photoaged versus intrinsically aged facial skin and provides the groundwork for future studies to evaluate the efficacy of new treatments for photoaged skin.
, 5,6,9 EWS (Ewing's Sarcoma) gene encodes an RNA/DNA-binding protein that is ubiquitously expressed and involved in various cellular processes. EWS deficiency leads to impaired development and early senescence through unknown mechanisms. We found that EWS regulates the expression of Drosha and microRNAs (miRNAs). EWS deficiency resulted in increased expression of Drosha, a well-known microprocessor, and increased levels of miR-29b and miR-18b. Importantly, miR-29b and miR-18b were directly involved in the post-transcriptional regulation of collagen IV alpha 1 (Col4a1) and connective tissue growth factor (CTGF) in EWS knock-out (KO) mouse embryonic fibroblast cells. The upregulation of Drosha, miR-29b and miR-18b and the sequential downregulation of Col4a1 and CTGF contributed to the deregulation of dermal development in EWS KO mice. Otherwise, knockdown of Drosha rescued miRNA-dependent downregulation of Col4a1 and CTGF proteins. Taken together, our data indicate that EWS is involved in post-transcriptional regulation of Col4a1 and CTGF via a Drosha-miRNA-dependent pathway. This finding suggests that EWS has a novel role in dermal morphogenesis through the modulation of miRNA biogenesis. 1 EWS also interacts with subunits of transcription factor II D, CREB-binding protein (CBP) and RNA polymerase II complexes, suggesting a role in basic transcription.2 Subsequent studies have shown that EWS acts as a transcriptional activator for BRN3A, HNF3, and OCT4 in a cell-type-and promoter-specific manner.3-5 Interestingly, EWS gene is frequently rearranged by chromosomal translocations in several cancers, leading to its fusion with many transcription factors including FLI1, ATF1, and WT1. The resulting chimeric fusion proteins, such as EWS-FLI1, EWS-ATF1, and EWS-WT1, function as aberrant transcription factors that drive proliferation, survival, and transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.