Human ovarian cancer is diagnosed in the late, metastatic stages but the underlying mechanisms remain poorly understood. We report a surprising functional link between CD151-α3β1 integrin complexes and the malignancy of serous-type ovarian cancer. Analyses of clinical specimens indicate that CD151 expression is significantly reduced or diminished in 90% of metastatic lesions, while it remains detectable in 58% of primary tumors. These observations suggest a putative tumor-suppressing role of CD151 in ovarian cancer. Indeed, our analyses show that knocking down CD151 or α3 integrin enhances tumor cell proliferation, growth and ascites production in nude mice. These changes are accompanied by impaired cell-cell contacts and aberrant expression of E-cadherin, Mucin 5AC and fibronectin, largely reminiscent of an epithelial to mesenchymal transition (EMT)-like change. Importantly, Slug, a master regulator of EMT, is markedly elevated. Knocking down Slug partially restores CD151-α3β1 integrin complex-dependent suppression of cell proliferation. Moreover, disruption of these adhesion protein complexes is accompanied by a concomitant activation of canonical Wnt signaling, including elevated levels of β-catenin and Axin-2 as well as resistance to the inhibition in β-catenin-dependent transcriptional complexes. Together, our study demonstrates that CD151-α3β1 integrin complexes regulate ovarian tumor growth by repressing Slug-mediated EMT and Wnt signaling.
Integrins, a family of heterodimeric receptors for extracellular matrix, are promising therapeutic targets for ovarian cancer, particularly high-grade serous-type (HGSOC), as they drive tumor cell attachment, migration, proliferation and survival by activating focal adhesion kinase (FAK)-dependent signaling. Owing to the potential off-target effects of FAK inhibitors, disruption of the integrin signaling axis remains to be a challenge. Here, we tackled this barrier by screening for inhibitors being functionally cooperative with small-molecule VS-6063, a phase II FAK inhibitor. From this screening, JQ1, a potent inhibitor of Myc oncogenic network, emerged as the most robust collaborator. Treatment with a combination of VS-6063 and JQ1 synergistically caused an arrest of tumor cells at the G2/M phase and a decrease in the XIAP-linked cell survival. Our subsequent mechanistic analyses indicate that this functional cooperation was strongly associated with the concomitant disruption of activation or expression of FAK and c-Myc as well as their downstream signaling through the PI3K/Akt pathway. In line with these observations, we detected a strong co-amplification or upregulation at genomic or protein level for FAK and c-Myc in a large portion of primary tumors in the TCGA or a local HGSOC patient cohort. Taken together, our results suggest that the integrin–FAK signaling axis and c-Myc synergistically drive cell proliferation, survival and oncogenic potential in HGSOC. As such, our study provides key genetic, functional and signaling bases for the small-molecule-based co-targeting of these two distinct oncogenic drivers as a new line of targeted therapy against human ovarian cancer.
Tetraspanin CD151 interacts with laminin-binding integrins (i.e., a3b1, a6b1 and a6b4) and other cell surface molecules to control diverse cellular and physiological processes, ranging from cell adhesion, migration and survival to tissue architecture and homeostasis. Here, we report a novel role of CD151 in maintaining the branching morphogenesis and activity of progenitor cells during the pubertal development of mammary glands. In contrast to the disruption of laminin-binding integrins, CD151 removal in mice enhanced the tertiary branching in mammary glands by 2.4-fold and the number of terminal end buds (TEBs) by 30%, while having minimal influence on either primary or secondary ductal branching. Consistent with these morphological changes are the skewed distribution of basal/ myoepithelial cells and a 3.2-fold increase in proliferating Ki67-positive cells. These novel observations suggest that CD151 impacts the branching morphogenesis of mammary glands by upregulating the activities of bipotent progenitor cells. Indeed, our subsequent analyses indicate that upon CD151 removal the proportion of CD24 Hi CD49f Low progenitor cells in the mammary gland increased by 34%, and their proliferating and differentiating activities were significantly upregulated. Importantly, fibronectin, a pro-branching extracellular matrix (ECM) protein deposited underlying mammary epithelial or progenitor cells, increased by >7.2-fold. Moreover, there was a concomitant increase in the expression and nuclear distribution of Slug, a transcription factor implicated in the maintenance of mammary progenitor cell activities. Taken together, our studies demonstrate that integrin-associated CD151 represses mammary branching morphogenesis by controlling progenitor cell activities, ECM integrity and transcription program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.